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Some thoughts on phase-space representations in gyrotron theory

R. J. LUMSDENTY and P. A. LINDSAY}

The paper is divided into two main parts. The first gives a formal representation of
perturbation theory in terms of manifolds in phase space, with particular reference
to gyrotron theory. The second considers the extension of the linear coupled
modes theory for the gyrotron travelling-wave tube presented in Lindsay et al.
(1982) to include an electron density distribution. We call the resulting theory a
‘hybrid’ model. The paper concludes with the development of a dispersion equa-
tion for this model using a full Fourier—Laplace transform method.

1. Introduction

Something of a revolution has been occurring since the mid 1950s in the mathe-
matical presentation of physics. Central to this new approach are the dual vector
spaces of tangent vectors (derivative operators) {9/0x'} and differentials {dx'} on
manifolds. In this paper, we use this theory only in an elementary way, so we will
not give a detailed account of it: many good references for it are now available
(Nickerson et al. 1959, Flanders 1963, Bishop and Goldberg 1968, Abraham and
Marsden 1978, Deschamps 1981). So far this approach has not been widely used in
plasma physics nor in microwave engineering. We introduce it here to construct a
formal mathematical framework in which to classify rigorously the various mathe-
matical models used in the theory of the gyrotron. In particular, we can thereby give
more formal definitions of such concepts as filamentary beams and polarization
variables than the conventional ones typified by, for example, the series of papers by
Haus and Bobroff (see, for example, Haus and Bobroff (1957)).

In the main part of the paper, we then proceed to set up some sort of bridge
between the elementary models and the Vlasov equation analyses by developing
what we will call a ‘hybrid’ method. We retain a relatively rigorous and general
approach throughout which, we believe, gives an unexpectedly powerful physical
insight into the theory. In this paper, we conclude with the development of a typical
dispersion equation for a gyro-TWT. This parallels the presentation in Lindsay et al.
(1982).

2. Phase-space representations

An electron trajectory is simply a space curve in phase space. Through every
point in phase space passes one unique trajectory, in a specific direction. If the phase
space is n-dimensional, we can specify this direction by a single tangent vector or by
(n — 1) relations between differentials. The actual trajectory is an integral curve of
the tangent vector.

For simplicity, consider the four-space parametrized by the coordinates x, y, z,
and t. A trajectory in this ‘real’ space is a curve 4, which is a function from some

Received 15 August 1984; accepted 22 August 1984.
+ Department of Electronic and Electrical Engineering, King’s College, University of
London, Strand, London WC2R 2LS, UK.



954 R. J. Lumsden and P. A. Lindsay

parameter u into the x, y, z, t space, or
Aru—ox, v, 2, t

In terms of differentials, the direction of A at any point can be specified by the three
relations:
A¥dz =v/x, y, z, )A* dt

A*dy = vy(x, y, z, )A* dt (2.1)
A¥ dx = v dx, y, z, )A* dt

for given functions v,, v,, v,, where the 4* notation indicates that, for example, the
integral of dz along 4 equals that of v_ dt along A for an arbitrary interval in u, or

uz uz uz l uz
J‘/‘h*dz=J %—zdu=J- szdu=j v, A% dt
» L, du ., du -

where 4, is the z component of the 4 function: z = 4,(u) along A, and likewise 4,.
The corresponding tangent vector is simply the directional derivative operator
along 4, or d/du. Now this can be written as
d dx dy dz dt
— =3, +—0,+—0,+0 2.2
du du x+du y+du =t O 22)
using the notation 4, for é/dx, and from the equations in differentials, since the total
derivatives along 4 appear in

d¢
e ==
A* dE I du

for an arbitrary variable &, we can express this as

4 = C 0%, )0, + v,(X, D)8, + v,(X, )0, + 17/] 2.3)
du du
writing (x, t) for (x, y, z, t). Note how 0., @,, 0, and 0, form a vector basis for all
directional derivatives at an arbitrary point of the four-space.

Turning to the seven-dimensional phase-space with coordinates x, y, z, Uy, Uy, U,,
t, which we call the space N, let us consider a cycloidal motion modified by a
transverse electric field as described by the equations

™ dz = v, T* dt
™ dy = v(X, v, t)t* dt

™* dx = v (X, v, t)t* dt

* —

™dv,=0 (2.4)
e e

™ dv, — — Bov X, v, t)t* dt = — — E, t*dt
m m
e e

™*dv, + — Boo X, v, )t* dt = — — E t* dt
m m

representing the trajectory by 7, and assuming a constant z-velocity v, = v,,. We
will also use t to represent the parameter of the trajectory t, since the two never
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occupy an ambiguous position in our notation. Now in N, a basis for tangent
vectors is given by the set

0y, 0y,0,,0,,0,,0

vy vz

O

So the directional derivative along T must admit a representation
d i i
E=Zéaxi+2¢avi+aa,

for some functions ¢, €2, ..., ¥ and ¢, and representing x by x*, y by x?, etc. Now
by the chain rule, it must hold that

dx' . 4 . dt
- T gt

so from our equations in differentials we can write

d dt : e
Ezal:vxax + vyﬁy + Uzaz _; [Bovy + Ex]avx

¥ % [Bov, — E,J,, + 08, + a,] (2.5)

where the d,, term just drops out.

If we choose the parameter t to be uniform with ¢ so that dt/dt = 1, this expres-
sion takes the form given below, which we refer to as the Vliasov operator for this
motion:

VL = Uy 6): + Uy 6y + vzlaz _;3 [BO vy + Ex]avx +5 [BO Uy — Ey]avy + al (26)

We define a datum m-space as an arbitrary m-dimensional subspace of phase space
which intersects with any arbitrary trajectory at most once. Thus our trajectories
will ‘draw out’ a datum m-space into an (m + 1)-space and m can be at most 6 in our
space N. We choose the term datum because our trajectories are characteristics for
the PDE VL(f) = 0 so a datum space is one on which ‘initial’ data for any solution f
of this PDE can be given.

A filamentary beam can then be defined as the two-space generated in phase
space from an arbitrary one-dimensional datum space; ie. ‘initial’ data for a fila-
mentary beam is given in terms of a space curve or filament in phase space (say, in
the hyperplanes z = 0 or t = 0). The resulting two-space—an ordinary surface—in
phase space we will call #. Now, because % is only a two-dimensional manifold, we
only need two coordinates to parametrize it. We choose z and t. Because & is, by
definition, generated from trajectories from the initial datum one-space, at any point
of # - d/dt must lie in (i.e. be tangent to) &#. Any tangent vector of # can be
expressed in terms of the basis of just the two vectors:

0 and 9,

z

g F

Where these 0, and &, are not the same as those of the surrounding phase space: for
example 0, |z is taken in the direction of a vector lying in or tangent to & in a
constant-t plane.
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The only relationship in our t*-equations still surviving as a relationship
between coordinates of & is t* dz = v, t* dt, so we have

d_dz, | i,
dv  dt |y dr s
dt
= ;l_T (vzlaz + at) = vzlaz + at (27)

for = chosen uniform with ¢, and writing 8,5, 0|5 as just 0., &,. Since for any ¢,
t* d& = (d¢/dr) dr we can rewrite the remaining T*-equations as

4 X=0, —)y=0
dt - Y dt y="u
d e
:i; v, = — ; [BO v, + Ex]> (28)
d e
E v, = ; [Bovx - Ey]
if dt/dr = 1, but, within &, d/dt = v,,0, + d, so we obtain the equations
0,00, X + 0, x = v,
Uzlazy + 6ry = vy
0,0, 0, + 0,0, = — % [Bov, + E.] > 2.9)

e
0,10,0, + 0,0, = - [Bov, — E,]

which give x(z, 1), y(z, 1), v,(z, 1), v,(z, t) as functions over the surface & .

A sheet beam is a three-space generated from a datum two-space. We now need
three variables to parametrize this space . We might choose, x, z, t; d/dt will now
have the expansion

i b, g b
dt dt * dt 7 dt '

But an alternative is to choose a cycloidal angle defined by an (x, y)— (r, 0) or
(vy, v,)— (v, @) transformation. If the E field in our motion is small, then we can

say that

d d dz dt
a=d—f ¢+E Ezwmad, +v216,+0, (2.10)
for w,.; equal to (e/m)B, at the datum space, assumed a common constant. Using
this parametrization will preserve a linear form for our equations overall, at least as
a first-order approximation. Spatial and velocity cycloidal angles are often used
interchangeably: this strictly requires that the sheet beam have the form of an
annulus (as Lau (1982)): these also correspond to the ‘beamlet’ models (as, for
example, Dohler and Friz (1982)).
If we use another four variables which are themselves constants of the motion,

0, +
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such as the initial position and velocity at some entry plane z = z, (a datum space
for our cycloidal motion) or x,, y;, v,,, U;;, W€ can reparametrize the whole phase-
space N in terms of these variables by the transformation:

X = x(xb Vi Ui Uzys ¢9 2, t)
y= y(xl’ Yis UVi1s Uzys ¢9 Z, t)
v, = Uy(xla Yis Uity Uzt 9, 2, 1)
¢=¢, z=2z t=t
which is tantamount to solving the equations of motion. Note that because

ﬁ dy, dv,, dv,

d/dz is still of the form w ;04 + v,,0, + 0, given above.

3. Phase spaces with perturbation

We can set up analogous models for perturbation theories by defining a 13-space
P with coordinates which we label x?, x©, y O @ 5O 7O (0 5O 0 v‘f’, ',
v'9, t. The barred (‘9) coordinates we will call zero-order complement rather than
first order: subsequently we approximate these by variables x*), y(*), etc., obeying
linearized equations. We further define the trivial mapping from P to N or A":
P— N by & (x9, x®, 1) = (x@ + x©, t) writing x@ for x©, y@, 2@, @, p(®, v,
likewise x@; i.e. ./ identifies that point of N where x = x©@ + x©, y = y‘o’ + y‘ﬁ’

0, =0 + v®, ¢ =t with the point x@, x®@, y© @ ¢of P,

A datum space D in P corresponding to a given datum space DY in N is just the
unique subspace of P lying in the x® = 0 or x@ = y® = ... = v® = 0 hyperplane
such that A(D*) = D¥. Thus if (x, ¢) is a point in DV, (x, 0, t) is a point in D*! This
can then be, at most, a six-dimensional subspace of P.

Now from any datum space in P we define two manifolds drawn out by the
trajectories: one obeys a specially selected set of zero-order equations and lies
entirely in the xX® =0 or x® = y® = | = @ = 0 hyperplane. We call this the
zero-order solution (space) and denote this manifold by 7© or ¢ if the datum
space is D (in N or P). Evidently, because x® = 0 here, the equatlons in x@, yO,
v'®, t describing 7@ will be the same as those in x, y, ..., v,, t describing (T ‘0’)
in N.

The second manifold is that obeying the actual equations in that, denoting the
manifold by 7, #(J) is the solution space in N of our actual dynamical equations.
7 is made unique by the requirement that the zero-order variables on J obey the
zero-order equations, or the projection of 7 onto the x® = 0 hyperplane is just
T,

Under this model, 7 and 7* can at most be seven-dimensional manifolds in P,
and so are analogous to & and % in N, in that they represent hypersurfaces in P
parametrizable by a restricted set of variables. Furthermore, if we take the projec-
tion of 7 onto some x@ = k hyperplane; ie. look at just the x®, y@, ..., v®, ¢
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variation, here all trajectories emanate from the origin because of the definition of
the datum space in P. Note, incidentally, how trajectories are subsumed under these
definitions as the  spaces deriving from a point datum space.

Now once our datum space is six-dimensional, then every point of N is a
member of the solution space. But 7 and .7 © here are still just seven-dimensional
hypersurfaces in P, with the property now that #(F) = N, /(F?) = N. So we can
speak of the notion of corresponding points of 7 and 7 as mapping under .4 into
the same point of N: thus if (x', x©, 1)isin 7 and (x'©, 0, t) is in 7@ then these
are corresponding points if x@ + x©@ = x'® Using this notion, we can define,
given a density function n over the datum space and knowing dn/dt = 0 so that n is
known over the actual space 7 and over 7 ©, a zero-order density function n'® over
T by

n(x©, x@ 1) = n(x"?, 0, 1) (3.1

where (x@, x@, 1) is in 7 and (x'©, 0, 1) is the corresponding point of 7®. This
agrees with the usual notion that this is the zero-order density at ‘the same’ point.
Observe that there will now also be a trajectory in 7 itself containing a point (x"?,
x' @ 1) where x'© equals that on the F© point above. So n'® at any point in 7 is
in fact equal to the ‘actual’ density n at some nearby point in 7, because n(x®, x®,
t)in 7 will equal n(x®, 0, 1) in 7 ¥ gince both emanate from the same datum space

point.
Our equations for 7 will be of the form:
d d 5
L x0 = g = x©® = @
dt ¥ dt ¥

and for 79:

d x© = ¢, x® =0
drt
In general, we approximate further, linearizing the x®, $@ equations to give us
equations
d d
40— g© W — g
x©® =0 — x=
dt ¥ dt ¥
where x'V, §!!” approximate x©@, $@. We can then define xD, $® such that x® =
x" 4+ x® and hence define a 19-space Q for the second-order perturbation with
x@, xM, x'V, t and a mapping 2: 0— N with 2(x©, x®, x, 1) = (x© 4 xV
+ x™, ¢), and manifolds 7 (actual), 7 © (x = xD =0), 7" (xD = 0), etc. Note
that n'®, such that n = n® + n'® on 7, nV nM etc., can all be defined analogously.
The Vlasov equation needs some care. We have

d d d d
=7 (@ + n®) = e n + - n® =0 3.2)
on J. But we cannot presume now that
;1d_ =0
T

For the d/dt direction on 7 does not necessarily correspond to that on 9.
Suppose 7 is a trajectory in 7. Then n'® along t equals n along the 7’ curve in ()
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described by the corresponding points of 7. But ' may not correspond to a trajectory
in 7 ©®—it may be cutting across trajectories. So we cannot presume it to be con-
stant along 7" and so n'” constant along .

The solution in fact comes out quite naturally. We need 7 variables to para-
metrize 7 in P, so we choose the actual variables x = x® + x® of N, which of
course are the zero-order x'© variables of the corresponding points of 7 ®. Putting x
as {x'}, we must have

] 6
= Z _—axl'+at= Zd)i(x’ t)ax"+at

dt S5y dt i=1
but in 7© we have similarly, using the x‘® variables to parametrize this

d o dx'” i) (©)
- = — ax,‘ ‘+“ 0 = b X N t ax.' + a
dT = d'[ (0) t igl ¢ ( ) (0) t

But these are the same variables now: we are in effect parametrizing both 4 and 7 ©
by the zero-order variables of the corresponding points in 7.

Applying this to a {classical) system in which the zero-order motion is cycloidal,
with an imposed RF excitation contributed by E, B fields, and defining w o =
{(e/m)B,, then since

d d d

—Xx=0,,

dt

d e
o= —(wceo v, + - [E.+v,B,—v, By]>

(3.3)

we obtain on J :

d
- n® 4 [vx 0.1 +0,0,n” +v,0,n

- <wce0 b, +— [E, + v, B, — v, By]>a,,x n(©
m
e

+ <wceo v, ——[E, + v, B, — v, BZ]>6uy n©
m

e
——[E, + v, B, —v,B,10,,n"” + ¢, n‘o’jl =0 (3.4
m
But x = x'?, v, = v/{%, etc, of the corresponding point of I ©® and the present
n® (x©@, x©, 1) is equal to n(x'®, 0, 1) there, so we can pull out
0, 0,1 + 0,0,n® + 0,0, 0% — W0 0,0, N + W00, , N + 3,0 =0
to obtain

d & e e
L o £ _ © _ £ _ (0)
I n'® = - [Ex+v,B, —v,B]o, n " [E, + v, B, — v, B;10, n

—5 [E, + v, B, — v,B,10,,n® (3.5)

which is the normal ‘first-order’ Vlasov equation.



960 R. J. Lumsden and P. A. Lindsay

In a relativistic system, Liouville’s theorem fails in X, v, t space, so we replace v
by u = yv where y = [1 — (v*/c?)]~ /2, as in Baldwin et al. (1969).

4. A classification of gyrotron theories

In terms of N- and P-spaces, we can easily see the main division of gyrotron
theory. Currently thought to be the most general and comprehensive are the theo-
ries involving an explicit density function n where the dynamical equations ‘disap-
pear’ into the Vlasov equation. We will call these Viasov theories. Most of the
elementary treatments, however, work without a density function, and consider the
conformation of a filamentary or sheet beam. We will call these beam conformation
theories. In the present context, the former involve n given on some six-dimensional
subspace of N, so that the datum space fills some hyperplane of N, whilst the latter
have a filament or sheet datum space, with the electron density regarded (in effect) as
constant thereon, and look at the shape of the resulting space generated by the
trajectories. In these beam conformation theories, the bunching that is integral to the
gyrotron’s amplification mechanism must appear as some sort of corrugation of an
‘initially’ regular datum space.

Now the trajectories are in fact the same in both cases and so the final informa-
tion derived really ought to be the same. In particular, there is a strong intuitive
feeling that we can somehow ‘add up’ filamentary or sheet beams to recover a ‘filled
space’ theory from the beam conformation theory without the direct intervention of
the Vlasov equation. There are good reasons for trying to do this: the beam confor-
mation theories give a much richer intuitive picture of what is actually going on. In
particular, the role of relativity is brought out markedly more clearly: in the Vlasov
methods, this is hidden in the relativistic velocity variable u = yv necessary to
recover Liouville’s theorem. This is why all elementary presentations of the gyrotron
mechanism (such as Lau (1982), Dohler and Friz (1982), Sprangle and Drobot
(1977), or Mourier (1980)) work from beam conformation models. The rest of this
paper, therefore, attempts to set up a rigorous extension of beam conformation
theories to include a density function. We call the resulting formulation a hybrid
theory.

5. Background to a hybrid theory

We develop the theory in terms of a configuration representing a simplified gyro-
TWT. This we take to be a semi-infinite cylinder of constant cross-section, which we
hereafter call the ‘waveguide’, open-ended to the right (z— +00); we do not
presume any particular cross-section. At some z = z,, we define an entry plane and,
presuming v, > 0 for all electrons at all times, this becomes a valid datum space in
the sense of our original definition. We imagine an electron gun somewhere to the
left of the entry plane which serves to set up a known electron distribution n, at the
entry plane, and that at, or immediately behind, the entry plane an input waveguide
injects an EM wave (the ‘source’) which will interact with the beam to perturb the
beam distribution increasingly with increasing z. The zero-order solution is taken to
correspond to that for no source wave.

In extending the theory to a hybrid formulation, the equations of motion give us
no new problems. We reparametrize the whole of the phase space N, in effect, in
terms of annular beamlets by choosing the variables, x,, y;, v,;, U, ¢, z and t. So
each (x,, y;, v, , v;) defines a kind of ‘virtual’ annular beamlet which will be para-
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metrized by ¢, z and t. v, is defined by v, = v, sin ¢, v, = v, cos ¢. We leave ¢ as a
‘current’ parameter rather than use the initial ¢, because the ¢-variation will give us
precisely the corrugation or bunching that we are looking for. The relativistic for-
mulation gives us four equations of motion:

d eB, e
d—r(yvx)+—m—o‘vy= —m—o[Ex+Usz—Usz]
d B
_('))Uy) - e_o Uy = — _e_ [Ey + v, Bx — Uy Bz]
dt mg my

(5.1)
4 v - — % [E.+v.B,—v,B]
e Yoz = Mo z x Dy y Px.
d e
el _ _ E-
dr ® mg c? v

where y = [1 — (v*/c?)] */? as usual.

Again, by expanding into the space P, we assume simple cycloidal motion for the
zero-order behaviour, which corresponds to setting all the RHSs above equal to
zero. Hence 3@ = y,—the constant initial value—and, taking the first equation as
an example, we obtain on the LHS:

e 5 5 = d - eB =
— 5 ¥ EC® + o) + o) + 00+ 90 o @0 + o) + 2 0 + 0?)
myc” 5§ dt my

using the y-equation, and writing v, for v, or v, or v,; on the RHS:

— Z[E+ (0 + o)B, — (o + v7)B,]
Mo

Taking the E; and B; (E,, E,, E., B,, B, B,) field components to be first-order, we

obtain on linearizing (retaining only first-order products) and subtracting the zero-

order equation dv'®/dt = —(eBo/mqy, v

d W
(1) (1) (1) Zeel (0)
v+ wet) —y v
dT x celYy 7 y
¢ Ep0p® _ % g 4 ,O0p _,0p
- 22 iU 0" — [ x+vy z — Uz y] (52)
Mo V1€ My7Yy

defining w,.; = eBo/Moyy = Weeo/y1- Remember also vf” = v,,, dvi®/dt = 0. The
remaining equations give:

d %)
LW _ gy Leel o)1)
dT y cel¥x yl x )’
= —2 Y Eo®® — —2[E, + v, B, — /"B (53)
mo V€™ Y meyy
d e e
— ) = E v%_, — E, + '9B, — v\®B 54
dT z mo'})lczg i z1 m()'))l[ z x y y x] ( )
d d e
S ==y = ——— ¥ E® (5.5)

dr dt moc* 5
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this last now becoming an equation integral to our set. Note here that these equa-
tions now give v, v,, v,, and y as functions of x;, y;, v,,, vy, ¢, z and ¢, but that
only the ¢, z and ¢t dependence is here determined because x,, y,, v,,, v,, (the
entry-plane values of x, y, v, and v,) are constants of the motion.
The dynamical equations are completed by:
dx® ay'? — 4 dz'")

&

=

dr 7 dr o T T (56)
now giving the first-order x, y*); z(!) dependence on ¢, z and . We will in fact
choose ¢@ and z® to parametrize our solutions rather than the actual ¢ and :z
subsequently. The distinction does not of course apply to x,, y;, v,,, v,, which
relate to the datum space.

We choose EM equations that will again give us explicit z and ¢ dependence by
using the separation defined in Marcuvitz and Schwinger (1951), which we also used
in Lindsay et al. (1982). Now in the normal development of these equations,
exp (jwt) dependence of all variables is assumed from the start. Partly to be consis-
tent and partly because of the much enhanced physical insight obtained, we will
present these in their general form instead—for arbitrary z, t dependence to be deter-
mined from our total self-consistent set of equations—and take a Fourier-Laplace
transform of all our equations together.

So, defining

E = Z I/;I(Z’ t)eJ.n(x’ J’) + Z qn(Z’ t)exn(x’ y) ’

; (5.7)
H =3 1,z 0hu(x ) + ¥ bz 0ha(x. 9))

where e,, and h,, are normalised transverse eigenfunctions of our waveguide
defined exactly as in Marcuwitz and Schwinger, but where we define

€, = [VL : (h_Ln X i)]i = (ax hyn - ay hxn)ir

| (5.8)
hzn = [Vl ' (eJ.n X i)]i = (ax eyn - 6y exn)i ’

to eliminate any presumption of exp (jwt) variation, 2 being the unit vector in the z
direction, we find on following much the same derivation as Marcuwitz and Sch-
winger:

—0.0, V3" = uo 071"

1
—3,0,ITF = |:£0 0 + — (kf,,E)Z]V,TE + 0, Je{'j -Jdz
0 )>

1 1
oo V™M= [uo 2+t (kz,.M>2]1:M _1 J J.eMdz
&0 €0 Jr

(5.9)
— 6,0, = £ 62VI™ 4 &, fe{',‘,‘ - ddx

z

ViE = —uyd,p,°

1™ — 0 0,q™ + f J,em dx

z
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with TE, TM modes defined according to whether e,, = ¢,,2, h,, = h,, 2 is zero or
not. The ks are the eigenvalues. The dZ integrals are taken over the cross-section
of the waveguide.

All the problems involve the evaluation of these dX coupling integrals and it is
only in these that the hybrid method will differ from the simple beam conformation
methods. We choose the Marcuwitz and Schwinger formulation precisely because of
the simple form it gives to these integrals. The more popular Helmholtz formulation
involves curl J and Vp in these integrals: the present ones however are directly
representative of the transverse and axial energy exchange. It is worth noting that in
beam conformation methods there is some ambiguity in the definition of J because
we do not have a density function, and the field is actually singular or discontinuous
at the beam. In the hybrid method we are in a position to give a consistent maxwel-
lian evaluation of J and hence the coupling integrals themselves.

We work in the simple phase space N. All the coupling integrals contain terms of
the form

Jeéi(x’ ynvedov, dv, dv, dx dy  ({=x,yorz)

for a density function n, to be consistent with the maxwellian definition of J, where
the integration is over all velocities and over X (the waveguide cross-section) in x, y
at a fixed z and t.

Presuming n to be known at the z = z, entry plane (hyperplane in N or P) for all
t, we can define the pull-back problem as that of expressing n—and hence the
integral—at an arbitrary z, ¢ in terms of this entry plane distribution.

Central to the problem is the observation that the electrons in the ‘current’ z
plane at the current ¢ crossed the z = z; entry plane in general at different t =1,
times. To treat this contingency correctly is very difficult, so we will assume that, at
least to zero order, v,, is the same for all electrons, or

n(x, v, t) X n(x’ v, d)’ t)a(vz - vzl(O))

where v_ o) is a system constant.

Consider a slice of phase space (N) lying in a constant ¢ hyperplane. Call it Z(¢).
Each trajectory intersects Z(¢) in a single point. So each trajectory is also uniquely
defined by the point x,, y;, Zy, Uy, Dy1» Uy, £y at Which it intersects the ¢ = ¢, hyper-
plane, and the total of these points defines Z(t,). So we can reparametrize the entire
set of Z(t)s for arbitrary t in terms of xy, y,, ...., v, at which each trajectory crosses
2(t,), and ¢ itself: this is the familiar Hamilton-Jacobi canonical transformation to
initial values. Write it thus:

X = X(X1, Vis cvv5 Ugps 1)

Y= WX Y15 oo Uz15 B)

Z=2(X1, ¥1» --» Vg1 1)

The importance of this transformation is that the total ‘area’ of the Z(t) correspond-
ing to E(t,) at arbitrary ¢t is constant (this is Liouville’s theorem) if the system is
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Hamiltonian, or

J dx dy dz dv, dv, dv, = f dx dy dz dv, dv, dv,

=(1) E(t1)

Relativistically, this does not hold for the observed velocities v but for the world
velocity u. Since

1
dv, dv, dv, = y_5 du, du, du,

the jacobian of the transform from x, y, z, v, v,, v, t0 Xy, yy, 2y, Uy, Uy, Uy IS DOt
now 1 but y3/y%:

dx dy dz dv, dv, dv, = (y}/y°) dx, dy, dz, dv,, dv,, dv,,

Now our coupling integrals contain instead the forms without dz, or dx dy dv, dv,
dv,, for fixed z, t. In terms of the transformation to the ¢t = ¢, plane initial values, t
being fixed so no dt integration terms appear, this takes the form

dx dy dv, dv, dv, = a,; dx, dy, dv,, dv,, dv,, + a,, dx, dz, dv, dv,, dv_,
+...+a,, dx, dy, dz, dv,, dv,

for various jacobian coefficients o, a,, ..., a,, here labelled in terms of the
‘missing’ differential. But under our constant v, assumption, the space over which we
integrate being a constant z space at constant ¢, it will correspond to a space of
constant z, at t,. So all the integral terms involving dz, also drop out, and only the

o,, term survives. By appropriate use of Cramer’s rule we can evaluate a,, as
Uz = | J I 6z 2

where |J| is the jacobian of the entire 6 x 6 transform, which we know to be y3/y°
and @,z, or 0z,/0z is the variation of z, with z under the transformation. But again
using our constant v, assumption, 0,z, & 1,80 a,; ~ y7/y°.

Now x, y, z, v, vy, v, t and Xy, ¥y, 2y, Uy, Uy, Upg, £y Where x = x(xy, yy, ...,
U 1)y ¥ = WX1s Vis--es Uy, 1), €tC., are on the same trajectory. But this does not
mean we can equate the densities n at the two points because of the failure of
Liouville’s theorem in X, v, t space. By the definition of n we must have:

f ndxdv=f ndx, dv,
E(1) E(t1)

but here it is dx du = y* dx dv that is the invariant differential form. So the scalar
invariant is not n but n/y®. Hence n(x, y, z, v, vy, v, t) = (¥*/y1) - n(Xy, V1, 215 Uas,
Uy1, Uyq, ;) and clearly this (y%/y7) cancels with the jacobian (y3/y°) in our coupling
integrals to give the form:

jeéi[x(xl, e O Yxg, o, 10X, e, DX, Vi 215 Uty Dy1s Uzgs £y)

x dv g dvyy dv,, dx, dy,

where all terms are evaluated for (x4, ..., t) or (xy, ¥, z;, U,y, Uy, Uy, L) €XCEPL 1,
which is for x,, y;, zy, vy, Uy, v,y and t,.

Under our constant v, assumption, all electrons in the same z plane at the same ¢
will pass through the same z, plane at the same ¢,; so, choosing ¢, to take us back
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precisely to the entry plane z = z, for whatever z, t at which we are performing the
integration by the requirement that

ty =t —(z2—2z\)/vy

we recover our original entry-plane related transformation from the Hamilton-
Jacobi one. Further, though the choice of the t, space being dependent on z and ¢,
the actual transformation itself is implicity dependent on z and ¢, and so this depen-
dence is given to the coupling integrals overall.

We can make further simplifications: the entry-plane is a system constant, so z,
can disappear explicitly. The dv,, integration is trivial because of the J function
form of the v,, distribution, so that can go. Let us further assume that the entry-
plane distribution is independent of ¢ (so t; now) so that n reduces to n(x;, ¥y, vy,
v,,) alone. Finally, let us assume that x(x,, ..., t), (x4, ..., t) vary only over a small
Larmor circle, so that e;[x(xy, ..., t), ¥(x;, ..., )] can be approximated by ez {x,, y,)
at whatever z, t. This is consistent with our zero-order solution if the Larmor radius
is small compared with the tube diameter; it is tantamount to considering operation
at the fundamental cyclotron harmonic only.

Under these assumptions, all z, t dependence of the coupling integrals will now
reside in v;. This contrasts with the Vlasov methods in which the dynamical depen-
dence is coupled into the EM equations though the density function in the same
coupling integrals. The present analysis will proceed by expressing v, linearly in the
field quantities V(z, 1), I,(z, 1), q,(z, t), p.(z, ) by means of the equations of motion,
expanding E,, E,, E,, B, B,, B, therein: these do not depend on x, yy, vy, v,; and
so separate out from the integration of the coupling integrals, which fact will enable
us to recover a dispersion relation.

We will also replace v,,, v,; by v,,, ¢, under the definition v,; =v,, sin ¢,
vy, = vy, €08 ¢y; this ¢, is also related to the zero-order ¢'© (rather than the
‘actual’ ¢) at the ‘current’ z by

w,

¢ =¢, +

(z—zy)
Uzl

6. Fourier analysis

Rather than postulate exp (jwt — jkz) dependence of our solutions, we take a full
Fourier analysis. This enables us rigorously to dispose of the periodicity of the zero-
order components. B

We return to the space P and to our dynamical equations with x© approx-
imated by x'V. We parametrize J (actually 7)) by its zero-order components,
choosing x@, y@, 2z, v\, v = p_,, ¢© and t. This is different to the approach
used in Vlasov methods in that they use the ‘actual’ variables rather than the zero-
order components. Other than this, our approach will closely parallel that of
Baldwin et al. (1969). The objective is to reformulate the products in the dynamical
equations as convolution integrals which will then give tractable terms on Fourier
transformation.

#© here is defined by v® = v'® sin ¢, v{¥ = v? cos ¢*. Consider a particular
(‘current’) point in 7 (identified by the subscript 0) labelled by the coordinates x,
YO 20 0 pO, t,. The zero-order parts of the unique trajectory passing through
this point (or its projection onto 7 ‘?) can be described by the equations in the
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parameter z':

20 =7

=ty — (26" — 2)/vz

©) (0) (0) ’ (6.1)
d) = 4)0 - (ZO —z )wcel/vzl
o = o)
and so
o® = o9 sin [ — (26 — 2weer/v.4] | 62
? .

U;O) = v(l_o()) Cos [d)g)) - (Z(OO) - z()wcel/vzl]"
all independent of x{, y{” and, but for ¢, of t, too. Next we integrate along the
trajectories with respect to z' from the datum entry plane z' = z; to the present
Z =z

Denote the ¢ value corresponding to z' as t': t' =ty — (25 - 2')/v,,. Now the
first-order variables may depend on z’ and on z{, t, through ¢ as well as ¢ and
v!® (and of course x¥, yi).

Hence, on integration, products of zero-order and first-order variables will appear as

200 (0)

z z'
¢‘“<z’, to — OU_>¢<0)(Z<00) —z)dz

z1

20(0)
J P, WO — 2) d' = j

1 21

The dy'"/dz terms, on the other hand, now appear as exact integrals because of the
choice of path of integration along the trajectory (r) and, by dz¥/dt = v, if 7 is
uniform with ¢, and since z/¥ = 2’ along the trajectory

z0(0) d z0(0) d zp(0)
L=y | Vv | d)
., dt ., dr 2

but in the datum entry plane, y*Xz,) =0 by definition, so these reduce to just
v V().

Hence the first equation of motion takes the form:

1) (0 (1)(,(0)
vzlvgc )(Z(O )’ tO) + WeerVz1y (ZO ] tO)

(63}
_ eel JU;O)(Z%O) — Z’)y(l)(zl’ tl) dz’'
71
e
= 7 jEi Oz — 2wz — 2') d7’
moy:C™
e
_ j[Ex + U(}’O)(ZE)O) _ Z()Bz _ 021By] dz/ (63)
Mo Y1

on substituting v{"’ = dy'"’/dt in the second term.
The field terms can now be brought into a convolution form too by remember-
ing that

Ei=Y Vye, for E=xory, E =} g,e,
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and putting

eon & 3 9, YO) = e [x 2 — 2), YO — 2)]

<

and
V=V, 1), q.,=qlz, 1)

we see that the RHS field terms above are again convolutions.

We now take Fourier-Laplace transforms with respect to the ‘current point’
variables z{”’ and t,. In t (i.e. t,) we take the usual [§ transform to w. But for z it is
patently inconsistent with our physical model to take j‘i’w integration. So instead we
again use a one-sided transform, integrating j;‘: to k. We will take the transform for
real k and for Im (w) > O so our results will remain consistent with the analysis of
Briggs (1964) and Bers (1975). We can then show that, for ¢!z, t') = 0 for t' < 0:

oy % zol® Z(OO) . Z,
J j </>“’<z’, to ~ —)w“”(zt?’ ~2)dz
0 z1 z1 U2y

x exp (—jkz{) exp (jwt,) dz¥ dt,

= J f oz, t') exp (—jkz') exp (jot') dz' dt’
0 z1

x j " 5O exp [— j<k -~ 3>u] du (6.4)
(4] Uzl

a slightly modified form of the usual Fourier convolution theorem. Since we inte-
grate for real k and Im (w) > 0, exp [ —j(k — (w/v,,))u] goes to zero as u goes to
+ o0 in the usual Laplace manner, so the y© integrals are easily evaluated knowing
the v'?, v{?, etc., functions. For the field terms we obtain products of the form

J V(Z, t') exp (—jkz') exp (jwt') dz’ dt’

X J‘eg,,(x(o)(u), ¥©(u)) exp |:—j<k — %)u] du

and it is consistent with our earlier assumptions about Larmor radii to reckon

e xOw), yOw) & e, (x5, i), independent of u, so we obtain
1

) w
{-2)
U2y

Using cos x = 4[exp (jx) + exp (—jx)] and sin x = (1/2j) [exp (jx) — exp (—jx)] to
(0)

Vn(kr w)e{n(xg:))’ yE)O)

express v\, v along the trajectory as:
) UT& £ (0) . s 1 (0) .
N = [exp (ji”) exp (—jk.u) — exp (—j@y”) exp (k. u)]

(0)
0 = 2 [exp (0) exp (—jkeu) + exp (—j68) exp . )
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where u = z{’ — 2/, corresponding to the new variable of integration, and we define
k. = w,.,/v,, for abbreviation (we also use k. = w/v,, later), and defining:

1 1 1

- + _ - r
fo=iiry P Tiza—ry P T a—w

we obtain for the Fourier-Laplace transform of our first equation:

vk, @) + Oy (K, ) = - =2 [T exp () — Bi exp (—j@)ly ik, @)

z1/1

2
-—5—% { (k. w) 2 ( w[2Bo — B3 exp (12¢) + B3 exp (—j2¢)]

2
My y1€7 0

+ e—;“[ﬁ? exp (12¢) + B exp (—qus)])

+ qn(k’ C()) €2n 2 [Bl (29 (Id) + ﬁl exp .](b)]}

e
B Mo 710, an { (k w)exnﬂo + p,,(k w)hz" >
x [B1 exp (i§) — Br exp (—j@)] — vl (k, w)h,, ﬁo} 65)

where, and from now on, we scrap the cumbersome ’ notation (although the zero-
order definition of these terms should be borne in mmd) writing just v, for v'%, z for
z), ¢ for ¢§Y etc.

Now the equations

d d
=X = ) =y = v(yl’
dt dt

do not admit of a formulation in terms of exact differentials and convolutions alone.
Instead, our Fourier-Laplace transform gives us, from d/dt = w0, + 0,10, + 0,
(exactly in these zero-order variables):

[—j(@ — kv,1) 4+ @ee185]x Ak, 0) = vk, @ r

[_](w kvzl) + wceladﬂ]y(u(k LU) = U(l)(k (U ‘ (66)

To eliminate the d,s, we take a Fourier transform in ¢ to a (discrete) variable s by

2n
j () exp (—jsp) dop

which is of course a Fourier series in ¢. This finally gives, writing

®) =Y fio - exp (sp)/2n

the full set of transformed equations in k, w, s (the ds here are Kronecker deltas):
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wce v —_
vgcl(;)(k, w) + wcelyfsl))(k’ w) — L= (ﬂ1 Vgsl) vk, @) — B1 ’Y=Sl')f' ik, )

1V21

_ 2ne Z[ (k. w)v

2
Mo Y€ 0z1 4

2

<exn(2.30 s0 ﬂ; 552 + ﬁ; 55(*2))
Eyn p+ -
+ T (ﬁz 5s2 + ﬁz 5s(—2))>

(Bl 5s1 + Bl s(— 1):|

m 2
2
-y [V"(k, @)esn Bobso + palks O,
mO ylvzl n 2
X (ﬂ1+551 - ﬂ;és(Al)) - Uzlln(k, CU)hyn ﬂO 5s0:| (67)

Bk, ©) — Ocrx{Blk, @) + b — 2 = (BT 1L ik, @) = BTy ks @)
1021

2ne v: (e, _
= 2. Z [Vn(k, w) Il <_J— (B3 052 + B3 05-2)

Mo V1€ V21

+ eyn(2ﬁ0 5s0 + B;5s2 - ﬁ;as(—'Z)))

+qn(k (D zlezn 2 (ﬁl sl ﬂl_és(—l)):|

- 2ne Z |:V;|(k’ w)eyn BO 650 + Uzlln(k’ w)hxn BO 550
MoY1Vz1 w

pok, w)h (ﬁl 05 + B0 s(— 1):| (6.8)

Z'I2

z(s) 2
Mo V1€ p 2

ok, w) = —2¢ z[V(k w) 2 (e"" (Bt 8,y + BT o1

+ eyn(ﬂrésl - :Bl_és(f 1))> + qn(k’ w)uzl ezn ﬂO 580]

__fme Z[qn(k )e.n o b0 + 2 ik )

Mo V1Vz1 n

X <% (ﬂfén + ﬁffss(—n) Bl ﬂ1 s — P10 s(— 1)>] (6.9)

2ne vy (€
Yk, w) = — o 0.2 [ 2 <_ (B 01 + Brdg—1)
+ eyn(ﬁr sl :Bl s(— 1) > n(k (,U zlezn ABO SO} (610)
—j((() - kvzl - swcel)xzsl))(k’ CL)) = vil(;)(k’ CO) (611)
—j((l) - kuzl - chel)y{sl))(k’ CL)) = U;ts))(k, (J)) (612)
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The ¢ — s transformation is very revealing, for it is precisely the appearance of ‘odd’
coefficients here that represents the corrugation or bunching that we are looking
for: a regular sinusoidal function (as v, v{”’) will show only balanced s = +1 and
s = — 1 components in this cartesian representation.

To obtain the dispersion equation, we put these as v{” + v’ into the coupling
integrals, considered at length in the preceding section. To our earlier simplifying
assumptions we now add that the entry-plane distribution n, (i.e. n at z =z,) is
independent of ¢, and hence of the zero-order ¢3’ or ‘¢’. This enables us to express
the coupling integrals in the form:

Jegi(x’ yinyx, y, vodx, v, vy, 2, 8 @) do v, dx dy dv,

remembering dv, dv, = v, d¢ dv, . Observe that now all the z, ¢, ¢ dependence is in
v
é .
Furthermore, putting v, = v¥” + v’ we have v’ = v, and v’ = v sin ¢ =
v, sin ¢, ¥ = v, cos ¢ so these latter two integrate d¢ to zero, and the v, term
just gives the constant:

J‘eci()@ yiny(x, y, v v,y 2o, dx dy do,

This constant represents the static field due to the presence of the static DC beam: it
contributes only constant V,, I, particular integrals and evidently, being an indepen-

dent term, does not contribute to the dispersion equation. So we are left with just
the v{!) terms. Now

vl = Z vl exp (js¢)

s

and, on integrating d¢, all these terms go to zero except the s = 0 term. This elimi-
nation of higher cyclotron harmonics is a consequence of our earlier assumption
about the constancy of e,, across a Larmor diameter: we are here developing a
theory for interaction just at the fundamental.

Since [3" 1 d¢ = 2, we are left with:

ff(f egd: dZ) = Jeéi(x, wny(x, ¥, v o), ¥, vy, k, @) vy dx dy dv,

as the Fourier—Laplace transform of the coupling integral components.
Fors =0,

e 2
(1) = —2nj 1 -2
Uz(s 0)(k’ CO) T my 7, ( C2> ((l) kvzl Z qn€:n

n

since B, = 1/j(k — k.) = jv, /(@ — kv,,), so that

2
1
%se( J eund. d):) = —omj = <1 - ”—;) P Y gk, ®)EEZ"  (6.13)
- z1

my n
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where we define

1
EEl = J‘ezmez,l y_ nix, y,v) v, dxdydv, (6.14)

1

keeping v, under the integral because it depends on v, = v, ;.
The transverse terms are a little more subtle. We need to use

2ne [% €xn
e [t

mg c2v,,
and to substitute for x{I.,,, ¥y, in the v{{)_o,, viiJ=o, equations; but then we
encounter a small problem: to abstract the dispersion relation, we want all terms in
k, w, including [(w — kv,,) + ®..,] to come outside the dx dy dv, integration. But
o, (the zero-order w, or eBy/my7y;) is dependent on v, or v;;. We can justify
bringing this outside the integration if we suppose that the spread of v, (v ,) is not
large. So, with the v,, assumption earlier (although the present requirement is argu-
ably less stringent), this means that our theory is restricted to narrow velocity dis-
tributions.
With that assumption, but still including the y,s in our integrals, we define:

2

vy
EE;neh = jem €yn 7c ny v, dx dy dv,
1

EE; " = jem €y ;l—: v, dx dy dv, (6.15)

—

n
EH; = J‘emhy,l ;—1 v, dx dy dv,
1
and likewise EEXm<) EEX™® EHIT etc., to obtain:

(@ — k,,)? me L
z (j el d > (w— kUz1)2 — Wl Peet mo (0 — k”zl)z — )

x 3V, EEzme) _ 27 —e;

x Y (V(EE;® — JEECY) — v, 1, EH}T )]
wcel(w — kvzl) W E 1
(o — kvz1)2 - wfﬂ) eet mg (w0 — kvn)z - wfel)

e 1
V EExm(rel) 2 s
R R Py

x Y (V(EE5® — 3EES) + 0,41, EHL."‘)] (6.16)
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(@ — kv.,)* me !
F&L J,dZ | = - e
(J frm s > (@ — ko)? — 02y |~ mo (@ — ko)? — 0)

cel
1

x YV, EEzme) _ 2 =
n (1]

x Y (V(EE® — SEE;Y) + v,,1, EHIy ]

. wcel(w — kvzl) K 1
J(w — k”z1)2 - wc2e1) et mg ((w — kUz1)2 - wfu)

1
% Vv, EEy;n(rel) — 2nj £
2 V.EE; T o (@ — ku.,)

x Y (V(EER® — EEQCD) — v, 1, EHi.’.")] (6.17)

where the (rel) integral terms derive ultimately from the relativistic terms in the
equations of motion, the EH integrals from the v x B terms. These expressions
remain very general: neither a particular waveguide cross-section nor a particular
zero-order electron distribution has been assumed, although we have imposed
velocity-space restrictions.

So finally we need but to take the Fourier—Laplace transforms of the remaining
parts of the V,, I, EM equations. The one way in which our transforms are ‘non-
standard’ is that we use the one-sided [ Fourier transform for z. The EM equations
contain a d,(8/dz) operator and so this will now generate terms at the z; boundary.
This is a convenient way to introduce the driving terms representing the input wave-
guide of the TWT gyrotron, which we now take to be at (or just left of) z = z,. If we
assume that the presence of the input waveguide makes V, and I, approximately
sinusoidal in time at the z = z, boundary, and so likewise &, V,, ¢, I, then these can
be represented by exponentials like:

g+ ¢Xp (jwe t) + g_ (24Y (_Jwe t)
where w, is the excitation frequency. Now for arbitrary f, we have:

f "6, fexp (—jkz) dz = —f(z,) exp (—jkzy) + jk Jw fexp (—jkz) dz

z1
so that if we take g;, exp (jo, t) + gy, exp (—jw,t) as the z; boundary value of 0, V,,
the Fourier—Laplace transform of our entire set gives:

— ko VTE + 1o 01T = exp (—jkz,)gv; illo + @) + gy, "j/l@ — o] (6.18)

TEy2
— ko IT® + [80 w? — (ki—]VIE +jw.7£f<j elt-J d2>

Ho
= exp (—jkz)gIr jllw + @) + g1, Jfl® — o)) (6.19)
(kTM 2 1
— koV™ + |:u0 w* — ——‘"’"—]I:M +— .?"f(JeI,?’Jz d2>
£o &o
= exp (—jkz)[gi" Tiflw + @) + g jllo — )] (6.20)

— kool™ 4 gy ?VIM +jwf$<J‘ e™.J d2>

= exp (—jkz,)[g1" "ille + w) + 91" " jfle — )] (6.21)
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Vit = jouo pr®
I™ = —jwe, qt™ + ?2([ e™MJ, dZ)

where now V,=V(k w), I,=I1(k w), q,=4q,ik ), p,=Dpik o), the
973’(_[ e - J dX) terms are as given previously and hence linear is all the V;, I,, ¢;,
p;. Observe that the exp (—jkz,) factors will restore the H(z — z,) Heaviside step on
inversion of the transforms, and the g* and g~ factors will ensure that the result is
real. These g* factors now form a discrete distribution over the mode numbers,
representing an EM entry-plane datum distribution analogous to the entry-plane
electron density distribution which is of course continuous.

The driver terms now appear in a form directly analogous to the é(z — z;) exp
(jw, t) excitation model used by Briggs (1964) or Bers (1975). In Bers’ notation, any
resulting dispersion equation will in our case give the right-hand k(w) functions
because we use the one-sided transform. It is amplification of such a right-hand
wave that we are now looking for; a left-hand wave just travels into the gun and
what happens there is rather unpredictable!

7. The dispersion equation

This full set of equations remains very general. However, we still have an infinite
number of variables. The final simplification is that usually made, we think mis-
takenly, first. This is the ‘single-mode assumption’. Now there is no reason to postu-
late a priori that the modes are ‘unlinked’. Indeed, in the presence of the beam and
hence the je - J d¥ coupling integrals, the nature of the dispersion equation is
quite altered: every mode is, at least weakly, coupled to every other, and so the very
concept of TE and TM mode identity should not be presumed. All we have now
defining each mode is the basic e, ,, h, eigenfunction. Exactly how the V,s and I,s
for each mode behave with z and t and the dispersion relation involved is quite
unknown: that is precisely what we are trying to find.

Regarding the equations as a matrix acting on the {V,}, {I,} vector of variables,
what we want is that ‘off-diagonal’ elements are generally negligible. Now these
off-diagonal (relating mode m and mode n) elements are given entirely by the EE]7,
EH7 integrals. Note that because h , =2 x e, so h,, = e,,, h,, = —e,,, we can
always formulate the EH ones as EE ones. So quite simply, we want all EEJ} to be
small if m # n.

We consider this view to be integral to our approach: rather than presume a
configuration and then see by calculation whether EE§} ~ §,,, EEjn the basic objec-
tive of gyrotron design is so to configure the system that we will bring this about.
Then the gyrotron becomes a simple device of predictable behaviour. For once that
is established, the equations separate into independent modal equations each with
its own dispersion relation just as for empty waveguide TE and TM modes. Now,
finally, we want to arrange that the dispersion relations for all but (ideally) one
mode will, at our chosen excitation frequency w, indicate a ‘cut-off’ or at least
non-amplifying condition, and so we recover the concept of the gyrotron as a single-
mode device.

Within the limitations of our assumptions—velocity distributions narrow in v,
and v, uniform in ¢,, and operation at the fundamental cyclotronic harmonic—
our analysis gives a very flexible approach to the investigation of alternative gyro-
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tron configurations, whose behaviour can now be analysed simply by evaluation of
the coupling integral coefficients EESy , EH§ without reworking the entire theory.
We close with an example of a dispersion equation. Consider a TE mode and
suppose all integrals coupling it to other modes are zero. Then the g, equation
drops out and we have just the two V1%, I¥ equations. There is no | e,J. dZ coup-

ling integral, so a bit of algebra gives:

2
|: : (w_z - kZ - (kcn)2> +_](1)((,0 - kvzl)

Mo \ €

y { —2mj e

2 2
((1) - kvzl) — Weer My

k
X [EEi(f) + EEim _ %(EE;(“’D + EE;("”) — vzl(EH; _ EH;"() :|

Mo w
+ . wgel € (EEx(rel) + EEy(rel)) V
- i
M@ — ko) — 0l mg ’ "
k (w — kv,,)2nj e gy
= — + g, — z — EH* — EH)) — 7.1
Ho 0 v T4 (w0 — kUz1)2 - wfel mgo il > 2 Ho w? 7D

putting the former RHSs as just g; and g, and EE;}; as EE; etc., and using the fact
that EE} = EE}, and also that EH; = —EH} sinceh,, =2 x e, = —e¢,X +¢,,¥
(X, ¥, 2 being the unit vectors).

By the analysis of Briggs (1964) and Bers (1975), we see that the actual dispersion
equation is the denominator of the expression for V, in reduced form (polynomial
over polynomial) less the (w + w,) driving term factor. They show that the solution
will, asymptotically in time (i.e. the steady-state solution), show exp (—jwt + jkz)
dependence where k = k,(w) is a solution to this dispersion equation at w = w,
(assuming that the dispersion equation reveals no absolute instabilities). The equa-
tion here is, then:

k
, 2y ol — ko) — [EE“’ — 4By _ 2212 EE‘“]

o K2 — k2 )= My Ho

CZ C" [((1) - kv'zl)2 - wfel]
Tho Cl)(Cl) _ kvzl)wgel(e/mO)EE(rel)
[(@ — kv,)?* — 0%,

writing EE® = EEX® + EE}, EE*" = EEX"®" + EE}"®, and recalling that EHj
— EH2 = EEX® + EEX". This term—appearing as the (v,,k/uo @)EE® term under
this switch—represents the ‘Weibel” instability due to v x B interaction. The EE"*"
terms (particularly the second) represent the relativistic effects: their origin is easily

traced to the y*) and dy!/dt parts of the original equation.
Writing the equation as:

(7.2)

w’ 2 2 2 2 12 €
C_2 —k* — kcn [((U - kvzl) - wcel] = _27[“0 Cl)((,l) - kvzl) m_

0

k
< [uw ko) — wJ[EE L.
How

reveals the uncoupled waveguide and cyclotron modal form of the LHS.

EE‘”] - wfel%EE‘"”]
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