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CHAPTER V

5.0 CYCLOTRON MODES

5.1 Introduction

As something of a preface to the next chapter, I would like to
extend and clarify the concept of cyclotron modes. This little
chapter does just that. It also serves as a simple application of
some of the ideas in Chapters II and IV.

Again, I will here restrict consideration to the non-relativistic

or 'classical' case.

5.2 Definition of the modes

5.2.1. To define cyclotron modes, we presume a system with an
external Bo field along é_much as in Chapter II, and suppose there is
no r.f. E or B field: this assumption of the absence of an E field

I will call the daift space assumption. So the Lorentz equation is

just

_d'_.v = - v)(
dt — -

5|0

B

o)

and, defining w_:= (¢/m)B , the w T W distinction being
c o ceo cel

unnecessary here, we can express our edquations as:

_d'._x = v iv = - W Vv iv = O
dTt b4 dr X cy dt 2
(1)
4 = v ji—v = wv fl—z = v_ =V
at ¥ vy dt 'y ¢ x ar z ozl

and these will henceforth be taken as the fundamental equations of
cyclotron mode systems.
Now, in the transverse velocity equations, we see that the

operator ﬁL-é%-gives a naturwal complex struecture to the transverse
c
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velocity space in the sense outlined at the end of Chapter IV.

For, putting a transverse velocity vector as v = vx§_+ vyzj and

defining J := jh-é%-, we find that J22_= - v, since
c

1 4 1 d N N 1 4 . . . )
» dt w_ dt + = — = - + = - +
o dra_ar HET VY T ar R L (v + vy
c c c
fe, L4 a
T w dt w_ dr — v.
C [o]

This in turn suggests a complexification in transverse velocity

space defined by:

Vi. = vx -_i-__jvy . (2)

Working with this sdimple complexigfication, we f£ind we can diagonalise
the velocity equations thus: multiply the second (é%—vy) equation

by j and then add and subtract:

d
4 + 3 - 4 b
= (vx ]vy) ch(vx ij)
ii—(v -9v.) = - Jw (v_ - jv.)
drt X va 0 Wy J v
so jl-v = + jw_ v, . (3.1)
dr + —c +

It is easy to see that we can extend this to a diagonalisation

of all the transverse equations, for

i_x = v = .i_._q_v
dr b4 w_ dt vy
c

_@_ = v = _—]:__g_v

dt ¥ y w dr x
e

d

so a;—(wcx - vy) = 0

d

— <+ =

3t (wcy vx) o .
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Define r, =X + jy and perform analogous manipulation to the

above to get:

d . _
g Bugre m V) 70
d .
—_— + =
g7 (Guw x_+v)) o .
So, defining o, =V, ¥ jwcr+, which notation I choose expressly

so as NOT to conflict with established notations here, we obtain

3-0, = O (3.2)
which, together with:

-V = + jw v
+ = 1%

dt +

gives the four unlinked or diagonalised equations.

5.2.2 Now let's loock at quite a different derivation of these

equations. Let us try to diagonalise the matrix appearing in:

X (6] (o] X
(¢]
a |7 Y
dT v (0] -W v (4)
X c X
v O w O v
L Y L c JL Y]

by finding the eigenvectors of this matrix. Putting the matrix as

A, the vectors as p, these must solve:
(é_— A)B_ = 0
which will have a solution if det(A - AI) = O. That determinant is

AZ (A2 + w?)
c
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giving solutions

as eigenvalues, so giving the eigenvecton equations:

1. Ap = O (5.1)
2 Ap = *ju_p (5.2)
Now A p, written as a row vector, is [v v -W v w v.] so
— = X y cy c X
these equations give respectively:

1. v = v._ = 0 (6.1)

X Y
2 v = + jw x - wv = + jw v

X cy c X

(6.2)
= <+ = +
vy jw vy WV jchy

as the equations of the two groups of eigenvector. Observe that the

A vy equations in (2.) reduce to just

= + 4 .

NOW PATENTLY THESE D0 NOT HAVE A SOLUTION FOR x, vy, Ver Vy
REAL.  BECAUSE THE EIGENVALUES ARE IMAGINARY, WE D0 NOT HAVE REAL
EIGENVECTORS.

So the matrix does NOT admit of a real diagonalization. Instead,
we proceed to make the sfandard complexigfication of x, y, Vi and Vo,
which, incidentally, merely corresponds for any vector space to the
replacement of its real scalars by complex ones.

In the standard complexification, the eigenvectors are now

given by any [x v Ve vy] vector of the following forms:
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1. [ax ay o 0] [BX By o 0]
2 ey -3y 5y oyl s ds o -3 6]
- w ™ w w
C C c [

to be consistent with the equations above. Note that we can choose
ANV two linearly independent vectors with their Ve and vy components
zero for (l.), but in (2.) the direction of the eigenvectors is
completely prescribed, and y and § represent their arbitrary magnitudes.
Now this appears to bear absolutely no relation to the Vor O, modes ;

but put an arbitrary [x ¥ Ve Vy] in terms of our eigenvectors,

which must form a basis for the [x vy v, Vy] vector space:

- - ~ - 1] N
x | o] B, = =
c c
y ay By i 3
= - — + —
v %l o | T o | T VTR Y vl w8 7
X c c
v o Jy -36
L Y L 4 -
Y 8
so that Xx = oo +0B + L (v.y + v §)
+x -xXx W + -
J
= + pep— . —
y 0+ay O_By o (V+Y v_§)
v, = j(V+Y - v_9)
vy = (v+y + v_§)
and solve for Oypr O_r Vo 1 V_i
the last two equations give:
+ 3 = 27
Ve ij 23v+Y
Ve ij = = 2jv_$

and these in the first two give:
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= +
pe 0,0 o_BX+vy/wC
y = o+ o_BY - vX/u)c
or
iy = o (a +90) +o (BL+3B) + = w_Fiv.)
x + Jy + ax__jay P T3 v w, v v,
hence
Jw r__ = c+ai‘+ O—Bi_i-vi
defining a _ = jwc(ax i_jdy)/ Bi.= ch(Bx j_JBy).

We recover our original definitions by the choice:

- -3 = 1
Y 2 8 2
o, = - 1 a_ = 0 (8)
B, = © B_ = 1.

So these modal variables v,s 0, correspond in fact to the

coefficients in the expression of an arbitrary [x ¥y Ve Vy] in terms
of a particular choice of eigenvectors of the system matrix.

But this only works if x, y, Vo vy are COMPLEX - i.e. if we
work in a complex vector space in the standard complexigication.

Now we originally introduced v_, r, and o, using the simple
complexification from x, ¥, V! Yy re;i. —-What this, in effect, does
is this: the complex vector space just defined above is effectively
an eight-dimensional real vector space. Choosing x, ¥y, Vot vy neal
restricts us to a four-dimensional subspace of this. In this subspace,
v, and v_, and r, and r_ are no longer independent: in particular
v, = O implies Ve = Vy =0 and so v_ = O. Furthermore, the eigen-

vectors themselves do NOT belong to this subspace.
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So we cannot in this subspace find a vector with the G,r O
and v_ components all zero but a non-zero v, for example. However,
the equations

d d
— 0 = 0 -— Vv = + ju v
dr + dt + = I8V

still hold for elements of this subspace just as they do throughout
the complex vector space.

Let's look at this in a little more detail: we restrict our
attention to the transverse section of phase space co-ordinated by
X, Vs Vx’ vy in a given t-plane (i.e. we'll 'hold' the t variation
for the moment, since we will not 'complexify' t). Call this
N, (). We perform the standand complexigication of this space,
replacing its real co-ordinates with complex ones to obtain a new
complex vectorn space which we can call CNJ_(t) (in the notation of
Nickerson, Spencer and Steenrod [1D. So we now treat x, vy, vX, vy
as being complex variables: clearly this four-dimensional complex
space corresponds to an 8-dimensional neal one parametrised by X 1
i Ypr g0 Vrr Vi vyr' Vyit

The Admple complexification takes us into a four-dimensional
subspace of CNL(t), defined in terms of its real counterpart by
X, =y. =v._, =v._, =0, or in terms of the complex parameters by

i i xi yi

X = 2, y = §, Ve = ;x’ Vy = Gy’ using the bar for complex conjugate.

Since the subspace is in 1 : 1 correspondence with NL(t) itself we
can refer to it AS Np (t).
Over the whole of CNL(t) we can define the variables Ver Vs

r, and r_: these are complex variables and given an alternative
co-ordinate system for CNL(t) to X, ¥, Vs Vy' We can furthermore

choose o, and ¢o_ rather than r, and r , and then v = o, =0_= (o]
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defines the v, eigenvector line in our space.
On the subspace NL(t), the defining restriction above appears
in terms of THESE variables as v_ = §+, r = ;+, and by a quick

calculation, we see also that o_ = 5+ there too. THIS SPACE DOES

NOT CONTAIN THE EIGENVECTORS, THEN, since if v

+ is zero, so is v_
etc.

Let's append to (3Nl(t) and therefore to NL(t) the« parameter
t which remains #ealf, but now gives a 4 complex % 1 real dimensional
space corresponding to a 9 dimensional real space.

Now trajectories are well-defined in this space, by the

equations for the four complex variables, which, assuming T is

uniform with t and using Vo 0+ parametrisation, take the form:

io’ =0 io' = 0 __d_v =.(DV ._.d_v =_'wv
ar %+ ar °- dar v+ - 9+ ar Jev.
and §2-= 1, for the real t.

dt

These equations are equivalent to 8 (9 including g§-= 1)
equations for the parameters of the real space associated with this.
So they uniquely define a trajectory all right!

Calling this 'space with t' just CNL, so that (ZNL is

parametrised by complex x, y, Vs vy or v _, o, and #eal t, and the
X = Xyuu. vy = Gy subspace just NL' let us now suppose We have a
datum point in N .
Now
d -
e o, if 3t o, o)

and

il—G = = v if -_— v = HJu Vv
dr + Jw e
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On N, §+ = v_, so the effect is that any such trajectory STAYS
IN Nl THROUGHOUT. That is, even though WITHIN NL a trajectory is

uniquely defined by the PAIR of equations:

since v, and v_ and o, and o_ are DEPENDENT there, the other equations
remain consistent with these at all times. So that is why we obtain
the same equations from the 4&imple complexification on just the N
subspace.

Another, more explicit, way of loocking at this is to consider
the real form of the space: since the imaginary parts obey the same

equations as the real parts, by linearity, the only solution given

the datum (initial) conditions x, =y, =v. ., =v , =0 at 1 =0 is
i i xi yvi

Il

the trivial one x,(t) =y, (1) = v , (1) v . (1) =0 for all 1, so
i i xi yvi

again the trajectory stays in NL'

5.2.3 But when we talk of cyclotron modes, we normally mean the

eigenvector solutions, which correspond to the X 1 yr, v vyr parts

Xr

of solutions obeying our trajectory equations with

c+ = 0g_ = v_ = o v+ mode
= = = v m
0+ 0_ V+ 0 - ode
(9)
= = = Q m
0+ v, v_ o_ ode
= = = 0 mod
o_ v, v_ 0+ e

where, by the diagonalisation, these can maintain all along a trajectory,
not just coincidentally at a point of it. So for a v, mode, the

entire behaviour is determined by the SINGLE equation
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giving complex v, as a function of T (or in effect, t).

NOTE THAT THESE MODAL VARTABLES AND THE MODES THEY CORRESPOND

TO HAVE BEEN FULLY DEFINED WITHOUT INTRODUCING FILAMENTARY BEAMS, OR
eIVt VARIATION, OR z,t PARAMETRISATION, JUST FROM THE DIAGONALISATION
O0F THE MATRIX. So now let's lock at these separated modes in more

detail.
From the eigenvector expansion, now, we can read off directly

for, for example, the v, mode =

- -] - -1
x = v+(2w ) y v+(2w )
c
v, = v+/2 vy = T v, 3/2
remembering y = - j/2 here.

We also know that ALONG ANY TRAJECTORY in phase space, v_

must obey

so that v = v e

where T use the left tilde (», not ~) to indicate a phasor independent
of T (but, as in Chapter II, it can depend on up to 6 constants of
the motion, some of which may now be complex).

We see that, as functions of 1 (i.e. all other phase space
parameters constant - we stay with one electron, one trajectory) Ve

and Vy show a 90° sinusoidal phase shift:

<
It

v /2 (cos + 9 sin
+/ ( w T + 3 wcT)

<
I

¥./2 (sinw T - j cos w_T)
+/ c J c
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so that if we always take Re(vx), Re(vy) as our physical solutions,
we see that v_ leads v_ by 90° wrt w .
X y c

Much the same pattern of phase shifts occurs between x and vy,
and between x and Vx’ y and vy: note that x is in phase with Vy'

Now v _ and v_ correspond to puie cyclotron modes. I now
introduce for the first time the term synchionous modes to describe
the modes where v, =Vv_*= o.

The behaviour of these synchronous modes is quite different.

Consider o,: mnowo, = -1, a_ = 0 gives:

so we have

= L
X = 0+(— 2)

= —l__. = ._j_
y o+( 2j) 0,5
V. = V = 0,

where o is CONSTANT along any trajectorxy. So now the physical
solutions x and y in fact correspond to the real and imaginary parts
of o, and are themselves CONSTANT wrt t.

Note how, then, any distribution in phase space will just be
'carried downstream' unaltered by these 'modes': 1i.e. a distribution
of electrons in an xy-plane at some initial z = z, will re-appear

quite unaltered at some subsequent z = z_ to which it is carried by

2
the trajectories. This property maintains in a weaker form for the
cyclotron modes too, there now being just a rotation at frequency W

imposed on the downstream drift. This is crucial to understanding

the physics of cyclotron mode systems: the modes are not dynamic
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but distrnibutional. This will be more clear if we consider a specific
example.

All treatments of cyclotron modes elsewhere consider ONLY the
special case of a f{lamentary beam, further restricted to ijt variation.
Note that these TW( restrictions are not concomitant to each other,
nor, as we have seen, essential to the concept of cyclotron (synchronous)
modes which can be fully developed without them.

First, the filamentary beam assumption: as shown in Chapter II,

a filamentary beam is conveniently parametrised by z and t if we assume
vZ constant. v, is certainly a weak constant or constant of the

motion as defined in Chapter II, as we see directly from the opening
equations of the present chapter. We also assume it to be a strong
comstant over the filamentary beam manifold, which just means we

assume it to be the same for successive electrons. Let us, as before,
write it as Vo1
The é%—for the filamentary beam takes the form at + vzlaz then,

and so our modal equations become:
(Bt + v .9 v, + Ju v, = ¢] (10.1)

(3, + v, BZ)O = 0 . (10.2)

J

Now for the second assumption: that of e wt dependence. This

reduces us to (real) noumal modes in the sense of Chapter IV.  The
choice of e‘jmt means that we choose now to look at filamentary beams
which show sinusoidal variation in time at any fixed z-plane. It
in fact turns out that the separated modes all show a pure rofation
with t in any fixed z-plane.

Now expressing the variables in terms of z-dependent phaboné

thus:
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V+(Z,t)

— —

n
<

+
N
®

n
Q
N
®

0+(z,t)

where I use the right tilde (~, not «) to distinguish this e]wt phasor
Jw T . .
from the earlier e ones, we obtain equations for v+, 0+ as:
~ L, W= TC, - _
By ¥ 3G vy, = 0O (11.1)
- zl zl —
~ . W~ _
azo+ + 3 - o, = (o) (11.2)
— zl —
Ye
and defining k = —9—-, k = —— , and solving these, we find:
e v c v
zl zl
. -J (ke‘;k )z
v+(z) = K.V+ e (12.1)
. . —jﬁyz
0+(z) = KC+ e (12.2)

where the phasors Kv+' K

54 are independent of z,t and vary according

to the initial conditions only. In the book by Louisell [2] these
3 + ) +
appear as |c+|e — and |b+|e — respectively to separate explicitly
their modulus and argument.
We now put these into the equations given earlier to abstract

the x, vy, A vy dependence for the separated modes. For example,

for the v+ mode:

. -j(k =k )z
- . d % e C Jwt
X zwc KV+ e e (13.1)
-j(k =k
oLl oz . 3 ( 3 c)z St
Y 2w v+
c
-jk =k )z
o= g e e
X 2 v+
-j(k =k )z
v = -3+k e 3¢ e ¢ Jwt
y 2 v+ (13.4)
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or for the 0+:

-Jkez jwt
. « (13.5)

N[
Ik
o
o,
<
1
o

-jk z
I ® Jwt
o+ ¢ v (13.6)

o
il
N [
W
[t
<
Il
o

We can now examine the actual 'appearance' of the resulting
modes, and this is excellently considered in Louisell [2], which
considerably expands the treatment given by Siegman [3]. In

particular, the distributional character of the modes comes out

clearly: that is, the ejwt

variation is actually imposed by the
manner of 'injection' of electrons, or their distribution at some

z =2z entry plane as a function of time rather than by dynamicaﬁ
processes as in an acoustic or 'space charge' plasma wave. To put

it another way, each electron simply goes about its business quite
unaware that it is constituting part of a wave pattern: there are

no forces BETWEEN electrons WITHIN the wave: the trajectories are
determined entirely by the entry conditions for each electron. I
have previously referred to this as the 'carrying downstream' property.
It works somewhat differently for synchrionows and for cyclotron

modes.

For synchronous modes, each individual electron travels in a

straight line in the z direction: v_ = v _= 0. To produce an ejwt

x 'y
rotation at every z-plane we require a distribution of electrons which
AT FIXED t is helical. As t varies, this entire helical distribution
moves bodily downstream at v, =v_, WITHOUT ROTATING, so the pitch
of the helix DIRECTLY produces the 'rotation' at any fixed z-plane, and

indeed is related to the resulting apparent w by:
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The o, and o_ modes differ simply in that the helix is wound left-
hand in one and right-hand in the other. Diagram 1 shows the left-
hand or o, version: this is Louisell's fig. 2.8 [2].

The mechanism is a little more subtle for the cyclotron modes,
for now each individual electron is ROTATING AT FREQUENCY W, AS WELL
AS travelling in the z direction at vz = Vzl' To obtain an ejwt
rotation of the point of intersection of the beam at every z-plane
NOW, we again have a distribution of electrons which is helical at
any fixed t, BUT NOW THIS ENTIRE DISTRIBUTION MOVES BODILY DOWNSTREAM
AT v, =V, AND AT THE SAME TIME ROTATES WITH FREQUENCY W, -

This has the effect that the cross-over point at which the

pitch changes from left-hand to right-hand is shifted from zero to

wc and we have:

2
oo 7 MNaL L MVa

(wWFw ) (+0 - w )
c = c

This means that for the v_ mode the pitch is necessarily right-handed,
but for the v, mode it is left-handed if w is to be greater than W
but again right-handed to effect an w less than W, - Indeed, at

w =W the pitch is infinite for the v, mode and the electrons lie
along a straight line (at any fixed t): the 'point of injection'
itself now rotates at W, - Diagram 2, for the v, mode, is Louisell's
fig. 2.6 [2].

I now introduce the terms for the individual modes:

the v_ mode we call the fast cyclotron mode

the v the sLow cyclotron mode

the g, mode we call the feft-hand synchronous mode

the ¢ the night-hand synchronous mode
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and I remark that the variables al+, a2+

used by Louisell correspond

to the present vor O, normalised wrt the energy of the wave.

5.3 Fourier Analysis

5.3.1 Now it is my opinion that these singular solutions are not
really so very important. A much more comprehensive picture of what
is happening can be obtained by looking at the general solutions
given by a Fourier analysis. I did this in outline in Chapter IV
and now repeat this analysis in more detail.

Again we consider a filamentary beam, parametrized by z,t.
Remember, as shown in Chapter II, we can re-parametrize all phase
space in terms of filamentary beams by introducing five other co-ordinates
which are constant along trajectories; so this model is not actually
restrictive.

Now I will make one significant departure from the analysis
in Chapter IV. In cyclotron mode systems we are generally more
concerned with known conditions at some enthy pfane, which I will set
as z = 0. This suggests that ocur initial conditions or datum space
is not actually for t = O now but for z = O,and this suggests the use
of a Laplace or one-sided transform in z, and this will then pick up
the entry plane data as boundary conditions. Furthermore we may
assume zero-stafte initial conditions in time - that is everything zero
at £t = O (or at some arbitrary time in the remote past or t = -«, which
enables us actually to regard the t transform as a two-sided or
Fourier one).

Our equations are:

+ . =
(Bt v, Bz)v+ Jw v, 0
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and we may postulate that we are using EITHER complexification for

v, iE Vv, + jvy. Whichever we assume, it will not affect our analysis.

-jk
The one-sided or Laplace transform by e IRz involves a

k+ = kr - je for € > O variable, as outlined at the beginning of

Chapter IV, In other words, we transform into a line in the k-plane

BELOW the real axis (just below will in fact suffice).
So LZ > atv_‘;(k,t) + Vzl[kaj-_(k't) - vi(z=0,t)] + chvi(k,t) =0
Btci(k,t) + Vzl[Jko-l;(k’t) - oi(z=0,t)] = 0

ijdT

F c > = Juwv (k,w) + Vzljkv-l_-_(k'w) + chV+(k,w) = v

v+(z=O,T)e

zl

. . jwT
- Jw0+(k,w) + vzljk0+(k,m) = v, g+(z=o,T)e3w art
- - i = - 7 I = ij
or: [k ke + kc]vt(k’w) 3j | vi(z O,t)e dt
[k - k .]c+(k,m) = - 3 / G+(Z=O,T)erTdT
e

where T is just a variable of integration. From these, then:

JwT

B 1 dk  dkz | dw  —jut |V:':L(Z=O’T)e dt
v .(z,£) = -3 ‘ Cy o7 © = 5 (14.1)
- l:k+kc - ;—-—]
zl
_ JwT
o (z,£) = -3 | dk Jkz | dw -jut lci(z—O’T)e ar
+ 27

2,”3 [ __L] (14.2)
Vzl'

which, apart from the switch of the initial conditions into z rather
than t, are much as in Chapter IV.

Performing the dw integration innermost, Im(w) must be > O
along the inversion line {(which may be Ref(w) : w, = 0), but Im(k) < O,

indeed Inm(k) = - je, so we have the situation that for (t-T1) < O
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we close the contour above and enclose no poles, but for (t-T1) > O,

closing it below, we pick up the poles at k + kc and at k respectively.

213 | k. ejkz i -j (vzlk+ wc) (t-1)

So vi}z,t) = - jvzl ar | 2n |H(t-T)vi}z==O,T)e dz
v +jw_(t-T1) jk(z-v _ (t-1))
= -i]:- H(t—T)V (Z=O,T) ¢ e z1 d_kd'[ (15.1)
2m +
and similarly
Vzll jk(z—vzl(t—r))
Gi}Z,t) = E;—'|H(t'-T)Gt}Z==O,T) e dkdT . (15.2)
w-j € , © .
Now, here | Ve = eg¢ l ejkwdk = e€¢6(w)2“
—co-jg -0
but 2ﬂe€w6(w) = 2ﬂe806(¢) = 218 (y) , so:
ijwc(t—T)
Vi'_(z't) =V ’ H(t - T)vi(z=0,r)e G(Z—vzl(t— T))dt
but  8(z-v_ (t-1)) = =T 8(-2 - (t-1)), giving:
u z-v . T = 1o 3 7)), giving:
zll zl
z +ik z
v (z,t) = H(z) v.(z=0,t - = e °© (16.1)
+ + v
- - zl
z
Oi(z't) = H(z) Gi(z_o't - ;z—l—) (16.2)

which graphically illustrates the ‘carrying downstream' or distributional

nature of these modes.

5.3.2 The dispersion equation for the system as a whole is obtained
as the product of the denominators for the diagonalised system (which
will occur as such if we take the transform on the x, y, Ver V

equations and eliminate all but one variable or form the determinant

of the transformed equations) and this is
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[k—kc——ﬂ’——][k+kc—V—“’—-][k—‘—li"-—]2 = o
. Vzl zl zl
or [k - 292 _ K%k - 292 = o (17)
v [®] v
zl zl

where the square on the second factor is really merely a reminder that
this corresponds to an original eigenvalue of multiplicity 2.
We can obtain this direct from the original equations by

assuming an exp (jkz - jot) solution:

(Bt + vzlaz)x = v, (at + vzlaz)vx = - wcvy

(Bt + vzlaz)y = vy (St + vzl'az)vy = WV,
so

(-jw + vzljk)x = v, (-jw + vzljk)vX = - wcvy

(-jw + vzljk)y = vy (-3w + vzljk)vy = W, -

Put the equations at left into those at right, first dividing through

by voi®
j(k—;-u-)—-)j(k— w)x+jkc(k—;7—w—)y = 0
zl zl zl
w w w
j(k - —)jk - =)y - 3k (k - —)x = O
3( V)J( V)y Jc( v)x

zl zl zl

[

which clearly has a solution for x,y if (k - ) = 0, which is
zl

satisfied then by ANY x,y, these being our synchronous modes, or else,

dividing through by (k - ;ELQ and eliminating x from the resulting
zl
equations:

2 w 2 _
(kC -k - ;f—0 )y = O
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2 2
which has a solution if kC - (k - ;#Lﬁ = 0, and this is the other
zl
term of our dispersion equation.

Observe that from the solutions to v+(z,t), 0+(z,t) we can

recover x(z,t), v(z,t), vx(z,t) and vy(z,t) for our filamentary

beam by
= 0 +oB +v -— v 26
* +& +w YT V-w
c
- _ A 3.
Yy o0 + 0B +v+(wy)+v_w6
c c
Ve = j‘yv+ - jév_
vy = yv,  t Sv_

which here become, for our present definition of o, B, v, §:

0+ 0_ . .
X = - -2—+ "2" - -‘l-2wc V+ + -LZLO v_ (18.1)
_ 0++ ] f—_—_ V+ _ V_
y = J3 173 2w 2w
c
X 2 2
v, v_
= = e Y =
vy 3 5 J 3 (18.4)

which last are of course the usual formulae as in e.g. Siegman [3].

To recover our INDIVIDUAL neal noamal modes as a special case,
jwot
we set up an e driver or source at z = O — exactly analogous to
jw t
the §(z)e © case considered by Briggs and Bers (see Chapter IV} -

which now is accommodated in the entry plane datum function.

So, putting:

v+(z = 0,T) = K .e

pA
0+(

Il
O
—

"

2
Q?‘i
(1]
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we get:

wo _
_j(v +kc)z jw t
_ > zl o
vt}z,t) = H(z)Kvté e (19.1)
v jw t
~ zl o]
0+(z,t) = H(z)Kb+e e (19.2)

which are real normal modes in the strict sense defined in Chapter
IV since the k , w_ of the exp j(w t -~ k z) obey D(k _,w ) = O and are
o o) o) e} o' o
both real.
Evidently these v+(z==0,r) and 0+(Z==O,T) forms again
correspond to a 'rotating point of injection'.
We now see too, that if v+(z==0,1) is in NL’ or that

v_(z=0,1) = ;+(Z==O,T), then this holds for the entire trajectory

since:

_ 2 jk =z
H(z) v, (z=0,t - —) (e €
+ v
zl

I

v (z,t)

z _jkcz
= H(z) v (z=0,t - —) e
- v
zl

v_(z,t)

and the result holds trivially for o, and o_ likewise.

Clearly the Fourier transform holds for the full sfandard
complexification space, Cle AND for the space of Asdmple complexdification

too.



