
 

 

 

Chapter 2 

 

The Calculus 

 
 

 

2. 1 Introduction 
 

 

The calculus is the gateway to higher mathematics. Its discovery in the seventeenth century 

revolutionised the application of mathematics to science. I will choose to introduce the 

calculus through the concept of the exterior derivative, which I believe gives a particularly 

clear intuition as to the real meaning of the subject.  

 

Whether you’re aware of it or not, you are familiar with the concept of an operator: the 

symbol “+” is the addition operator, “×” is the multiplication operator¸ and so on. An 

operator is something that transforms one mathematical entity into another, most commonly 

into another of the same kind. The minus sign “−” is used for two operators, first as a binary 

operator between two numbers like “4 − 3” or “x − y”, and secondly as a unary operator as 

in “−1”. All these, which are called arithmetic operators, act on the value of the numbers 

involved and are simply another way of writing our familiar functions.  

 

The calculus uses an operator which on its own I will call the differential operator, and 

which is written “d”. This differential operator is a unary operator like the unary 

negation in “−x”, but it acts slightly differently to the arithmetic operators above. It doesn’t 

alter the value of the variable. Instead, applied to a variable like x or y, it creates a new 

variable which we write as dx or dy, which, although written as two characters are single 

entities. dx is called the differential of x, and dy is called the differential of y. When I’ve 

introduced vectors in Chapter 5, I will give a new interpretation to these differentials, but for 

this Chapter you can simply think of them as new number variables much like x and y 

themselves, able to take any assigned numerical value. It needs to be stressed that dx and dy 

do not represent the product of a new variable d with either of the old variables. Each 

differential dx or dy is a single new number, represented by two letters to show its 

association with the original variable from which it derives. 

 

Applied to a constant number like 4 or 3.1415926, the result is rather special, and to stress 

this I will formulate it as a trivial “axiom 0”: 

 

 Axiom 0: The differential of a constant is identically zero. 

 



So d(4) ≡ 0, d(−27.253) ≡ 0, and using the standard convention that in algebra letters from 

the start of the alphabet denote constants, as we’ve already seen in expressions like ax
2
 + bx 

+ c, we have da ≡ 0, db ≡ 0 and dc ≡ 0. I use the “≡” symbol here to stress that these are not 

equations, but identities: da always has the value 0. 

 

When applied to an expression like x
2
 + y, the differential operator is defined by two 

further axioms: 

 

 Axiom I:   d(x + y) = dx + dy 

 Axiom II: d(x × y) = dx × y + x × dy 

 

We can rewrite axiom I, using axiom II and axiom 0. By axiom II, we have for the product of 

a constant and a variable as in ax: 

 

 d(ax) = d(a × x) = da × x + a × dx 

 

but since da = 0 by our “axiom 0” this reduces to just: 

 

 d(ax) = a × dx. 

 

So we can reformulate Axiom I in the more usual form: 

 

 Axiom I:   d(ax + by) = a.dx + b.dy. 

 

This axiom simply says that d is a linear operator. Axiom II, giving the action of d on a 

product “×”  is sometimes called the derivative property, sometimes the Leibniz property.
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Applying just these two axioms over and over on all the terms and factors of an expression 

(or through an equation) always leads eventually to an expression that is linear in the 

individual differentials. What this means is that however complicated the original 

expression, the result of applying the differential operator d always takes a form like: 

 

g(x, y).dx + h(x, y).dy 

 

if there were just two variables x and y, or like: 

 

g(x, y, z).dx + h(x, y, z).dy + p(x, y, z).dz 

 

if there are three: x, y and z. Such an expression is called a linear combination in the 

differentials dx, dy and dz.  

 

In effect, the operator cascades down through the parts of the expression until a strictly 

linear form spills out.  

 

The resulting expression is called the exterior derivative of the original expression, and the 

form it takes, which is always that of a linear combination in the individual differentials, is 

called a differential form. The general definition of a differential form at this lowest level 

is an expression which can be written as: 
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 f1(x1, x2, ..xn).dx1 + f2(x1, x2, ..xn).dx2 + . . . + fn(x1, x2, ..xn).dxn 

 

or in summation notation, Σj fj(x1, x2, ..xn).dxj, where only one differential appears in each 

term, and as a separate factor. In Chapter 6 I will extend the concept of a differential form 

by forming the exterior derivative of a differential form itself, but for this Chapter we will 

only need this first level of differential form, also called a 1-form.
2
 

 

Let’s look at an example. Suppose we have z = φ(x, y) = ax
2
 + 4xy + c, we can apply the 

differential operator to obtain this sequence: 

 

 dz = dφ(x, y) = d(ax
2
 + 4xy + c) = d(ax

2
) + d(4xy) + dc 

 

by Axiom I in its simple form. So using Axiom 0 and Axiom I in its second form, this gives: 

 

 dz = a.d(x
2
) + 4.d(xy) + 0 = a.(x.dx + x.dx) + 4.(y.dx + x.dy) 

 

using the derivative property, Axiom II, twice, expanding x
2
 = x × x on the first term. So, 

collecting terms: 

 

 dz = (2ax + 4y).dx + 4x.dy. 

 

This is in the form dz = φx(x, y).dx + φy(x, y).dy, with a linear combination in dx and dy, or 

a differential form or 1-form on the right.  

 

When expressed like this, with a single variable on the left and a differential form on the 

right with each differential appearing just once in the 1-form, the functions φx(x, y) and φy(x, 

y) appearing as the coefficients of the differentials, are called the partial derivatives of z 

with respect to x and y respectively. This is the more common use of the term “derivative”, 

but for this text I will emphasize the importance of the exterior derivative, and so when I 

refer simply to a derivative without a qualifying adjective, I will mean the exterior 

derivative.  

 

Applying the differential operator to any entity is called differentiating the original. The 

verb is thus to differentiate. I will also widely use derivative as an adjective to describe the 

result of differentiating. 

 

I will also refer to the entity differentiated as the original entity. 

 

 

So why complicate things by doubling up the number of variables from those we had 

originally? The immediate usefulness of the new variables is precisely that they abstract the 

linear part of the relationship between the old variables. Suppose we have the equation 

describing a simple parabola: 

 y = x
2
. 

Applying the differential operator to this equation gives: 
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 dy = d(x
2
) = d(x.x) = dx.x + x.dx = 2x.dx. 
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  Figure 2.1.1 

 

If we now look at the point where x = 1, so that y = x
2

 = 1 also, what dy = 2x.dx = 2.dx shows 

is that at this point on the parabola the y variable is changing twice as fast as the x. The graph 

in Figure 2.1.1 shows this: the equation dy = 2.dx is the equation of the straight line through 

the origin parallel to the tangent to the parabola at the point x = 1, y = 1. If we move to the 

point x = 2, where y = x
2
 = 4, we will have dy = 2x.dx = 4.dx, so at this point on the parabola, 

the y value is changing four times as fast as the x, and the equation in differentials represents 



a line through the origin parallel to the tangent at x = 2, y = 4, again as shown in Figure 

2.1.1.  

 

Note how at each point on the original graph, there is defined a new equation in the 

differentials, which is always linear in them. It’s as if we “freeze” or “lock” the original 

variables to see the relationship of the derivative ones (the differentials) at each point on the 

original graph. So although the derivative equation is in four variables – x, y, dx and dy – 

instead of the original two x and y, we look at the derivative form separately at each (x, y) 

point of the original. We can think of the differential operator as having generated a family 

of new equations in the differentials, one at each point on the original graph. 

 

It is amazing what this apparently trivial concept opens up. I’ll begin by working out some 

examples using the operator, and so start to build up an armoury of easy ready formulae to 

deal with various algebraic forms. 

 

First, a word of warning: don’t apply the differential operator across an inequality. Applied 

to an equation the derivative equation will also be true. But the independence of the 

differentials means that there is no guarantee that the new inequality will hold. So if we had 

y > x
2
 we cannot infer that dy > 2x.dx. This is a more serious danger than the “inequality 

trap” from multiplying by a negative number referred to in Section 1.5. Here there is no 

connection at all between the original inequality and the derivative one. 

 

 

 

2.2 Further Cases 
 

The application to subtraction is easy. Imagine b becomes –b in axiom I, so that: 

 

 d(a.x – b.y) = d(a.x + (–b).y) = a.dx + (–b).dy = a.dx – b.dy 

 

much as might be expected. 

 

Division is a little more subtle. To get d(x/y) put z = x/y, so that x = y.z. Then 

 

 d(x) = d(y.z) = dy.z  + y.dz from axiom II, so 

 

 dz = (dx – dy.z)/y = (dx – dy.(x/y))/y = dx/y – x.dy/y
2
 

 

or, more conveniently, 

 

 d(x/y) = (y.dx – x.dy)/y
2
. 

 

We can use this technique for the square root too. Putting x = √x.√x,  

 

 dx = √x.d√x + √x.d√x = 2√x.d√x from axiom II, 

 

 d√x = ½dx/√x. 

 



This can handle the cube root too. For x = 3√x. 3√x. 3√x, so 

 

 dx = d(3√x). 3√x. 3√x + 3√x.d(3√x. 3√x) 

      = d(3√x). 3√x. 3√x + 3√x.(d(3√x). 3√x + 3√x.d(3√x)) 

      = 3(3√x)
2
.d(3√x) 

 

So    d(3√x) = ⅓ dx/(3√x)
2
. 

A particularly useful result is that for the general power of x, x
n
. This can be demonstrated 

easily by the technique known as induction introduced in Section 1.10, where a result is 

established for n = 1 or n = 2, and then it is shown that if it holds for n, it must also hold for n 

+ 1. We already have the results for n = 1 and n = 2 as d(x
1
) = dx, and d(x

2
) = 2.x.dx. The n = 

1 result is special, the definition of the differential. The general result follows the n = 2 form, 

and is: 

d(x
n
) = n.x

n – 1
.dx. 

 

We can show this by induction like this. Given the result as above for n, we can then put for 

n + 1: 

 

d(x
n + 1

) = d(x
n
.x) = d(x

n
).x + x

n
.dx = n.x

n – 1
dx.x + x

n
.dx 

=  n.x
n – 1

.x dx + x
n
.dx = n.x

n
 dx + x

n
.dx = (n + 1).x

n
dx. 

 

If this looks one level out, put m = n + 1, so n = m – 1, and rewrite the result as: 

 

d(x
m
) = m.x

m – 1
.dx. 

 

In the next chapter, we will introduce a formalism that shows that roots can be written as 

fractional exponents, so that 3√x can be written as x
⅓

 and √x as x
½
. The same formalism puts 

the reciprocal of a power like 1/x
n
 as a negative exponent x

−n
. This leads to the formula 

above extending to the square and cube roots we developed earlier. So the cube root formula 

is just 

 

 d(3√x) = d(x
⅓
) = ⅓.x

(⅓ − 1)
.dx = ⅓.x

−⅔
 dx 

 

because x
−⅔  

(x to the minus two-thirds ) here is the same thing as 1/(3√x)
2
. 

 

Another way of showing this is to put y = 3√x, so that y
3
 = x, when we will have: 

 

 d(y
3
) = 3y

2
.dy = dx 

 

so dy = d(3√x) = dx/(3y
2
) = ⅓(1/(3√x)

2
).dx = ⅓(1/x

⅔
)dx = ⅓.x

−⅔
.dx. 

 

If you’ve followed the ideas so far, you should be comfortable with evaluating the 

derivatives of some reasonably complicated forms such as: 

 

 d(y = 4.x
2
 + 3x + 17)  gives dy = (4.2x + 3).dx = (8x + 3)dx 

 



where I use the shorthand notation d(y = φ(x)) for (dy = dφ(x)), to indicate that applying d to 

both sides of an equation will still give an equation, so we can think of d as applied across 

the equation as a whole. I also re-use Axiom 0, that the derivative of a constant is zero, so 

that, for example, d(17) = 0.  

 

The division formula enables us to tackle: 

 

 d((7.x + 4)/(x
2 

+ x)) = [(x
2
 + x).d(7.x + 4) − (7.x + 4).d(x

2
 + x)]/(x

2
 + x)

2
 

           = [(x
2
 + x).7dx − (7.x + 4).(2x + 1)dx]/(x

2
 + x)

2
 

           = (7x
2
 + 7x − 14x

2
 − 7x − 8x − 4)dx/(x

4
 + 2x

3
 + x

2
) 

           = [(−7x
2
 − 8x − 4) /(x

4
 + 2x

3
 + x

2
)] dx. 

 

There need not be any variable actually standing on its own in an equation. For example, the 

equation: 

 

 x
2
 + y = 4x + 7z

2
 can be differentiated directly to give: 

 

 2xdx + dy = 4dx + 14zdz 

or 

 (2x – 4)dx + dy – 14zdz = 0. 

 

Applying the operator to a general equation like this is sometimes called implicit 

differentiation. 

 

If the explicit form of the expression or equation is not known, we can apply functional 

notation as described in Section 1.1. Suppose we are given y as a function of x in the general 

form y = f(x). Then we know that whatever the actual form of f, the (exterior) derivative 

must be linear in the differentials. How do we write it? The most elegant way is to use the 

beautiful letter ∂, which seems to have no name, although it is commonly spoken as “dee” 

just like the operator itself, and I seem to have a very faint memory of its being sometimes 

called “del”. Using ∂, we write the derivative equation as: 

 

 dy = ∂f.dx = ∂f (x).dx 

 

where ∂f (x) is a new function of x, called the ordinary derivative of f. So for example, if 

the original function is f (x) = x
2
, then ∂f (x) = 2x, because if y = f (x) = x

2
, then dy = 2x.dx. 

Another common notation is dy = f Idx, using a superscript tick or “dash” against f. The 

commonest of all however, is the pseudo-division form: 

 dy = (df(x)/dx).dx 

which I will discuss in the next section. If there are two arguments to the function, say z = f 

(x, y), the ∂ notation lends itself to the elegant form: 

 dz = ∂x f.dx + ∂y f.dy 

 



which is simply a statement that the (exterior) derivative must be linear in the differentials 

of the arguments. Here ∂x f and ∂y f  constitute a general notation for the partial derivatives 

appearing as the coefficients of each differential.  

 

These are new functions ∂x f (x, y) and ∂y f (x, y). You should note that in the conventional 

terminology, the word derivative without a qualifying adjective is only used for these 

functions, not for the exterior derivative as I prefer to do in this text. We can without 

confusion use this same notation for the ordinary derivative above as well, so that: 

 

 ∂f (x) ≡ ∂x f (x) 

 

and I will often write the ordinary derivative this way too. The various ∂x f (x, y), ∂y f (x, y) 

forms that appear where there are multiple arguments are called partial derivatives, as 

stated above, and since these comprehend the ordinary derivative as a special case, I will 

generally avoid the latter term.  

 

These functions can be differentiated again, so for example: 

 

 d(∂x f (x, y)) = ∂x∂x f (x, y).dx + ∂y∂x f (x, y).dy 

 

and it is convenient to write this as: ∂x
2
f (x, y).dx + ∂y∂x f (x, y).dy, so ∂x

2
 ≡ ∂x∂x, another 

useful shorthand. 

 

If the underlying variables themselves are functions of other variables, say x and y depend on 

u and v, we can proceed by substituting for dx and dy using the equations for x and y in terms 

of u and v, which might be x = g(u, v), y = h(u, v) and which will have their own derivatives: 

  

 dx = ∂ug.du  + ∂vg.dv   

and  

 dy = ∂uh.du  + ∂vh.dv. 

 

 If we now substitute these into dz = ∂x f.dx + ∂y f.dy we get: 

 

 dz = ∂x f. (∂ug.du  + ∂vg.dv) + ∂y f. (∂uh.du  + ∂vh).dv 

     = (∂x f. ∂ug + ∂y f. ∂uh).du + (∂x f.∂vg + ∂y f. ∂vh).dv 

a result known as the chain rule. 

Care needs to be exercised in using this rule as we must evaluate ∂x f as ∂x f (x(u, v), y(u, v)), 

but ∂ug as ∂ug(u, v). In other words, we must choose the same (u, v) point to evaluate the 

expression through both levels. As so often, an example may help. Suppose we have: 

 z = 3x
2
 + xy 

 x = u + 2v 

 y = v
3
 



then
3
 

 dz = 6x.dx + y.dx + x.dy = (6x + y).dx + x.dy 

 dx = du + 2.dv 

 dy = 3v
2
.dv. 

Then dz = (6x + y).dx + x.dy = (6x(u, v) + y(u, v)).dx + x(u, v).dy 

      = (6x(u, v) + y(u, v)).(du + 2.dv) + x(u, v).(3v
2
.dv) 

      = (6(u + 2v) + (v
3
)).(du + 2.dv) + (u + 2v).(3v

2
.dv) 

      = (6u + 12v + v
3
).du + (12u + 24v + 2v

3
 + 3uv

2
 + 6v

3
).dv 

      = (6u + 12v + v
3
).du + (12u + 24v + 8v

3
 + 3uv

2
).dv. 

There’s no new maths here. We just need to be consistent in substituting at both the original 

level and at the derivative level, respectively for z, x and y, and for dz, dx and dy. 

 

 

2.3 The Infinitesimal Curse 
 

Nowhere have I suggested that the differentials have to be small numbers, let alone infinitely 

small. This is in strong contrast to the conventional presentation, which treats dx and dy as 

being tiny changes in the original variables x and y. I have been at pains to emphasize that 

the differential operator merely creates a linear differential form from the original 

expression or equation. 

 

Nevertheless, the infinitesimal idea played a huge role in the founding of the calculus, and we 

need to look at why it came to have the significance it did. 

 

Let’s go back to our parabola y = x
2
. Imagine a point on this curve (x, y) obeying the 

relationship y = x
2
 and imagine another point also on the curve at the x value x + dx where for 

the moment we do assume that dx is a very small value. Call the corresponding y value y*, so 

that (x + dx, y*) is also on the curve, and we will have y* = (x + dx)
2
. So 

 y* = (x + dx)
2

  = x
2
 + 2x.dx + (dx)

2
. 

 

Now if dx is very small, say 0.0001, then (dx)
2
 will be much smaller again – 0.0000001 – and 

we can regard this term as negligible, so that 

 

 y* = x
2
 + 2x.dx  to a very good approximation. But y = x

2
, so this becomes: 
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 Here I use the functional notation x = x(u, v) to indicate that x is a function of u and v. This notation is widely 

disparaged because “x” is being used for both a variable and a function, but even computer software can be 

made “intelligent” enough to see the distinction by means of context-sensitive parsing, and the suggestive power 

of the association is very helpful. 



 

 y* = y + 2x.dx 

or 

 y* –  y = 2x.dx. 

 

If we write the small change in y corresponding to dx and appearing here as y* − y as dy or: 

 

 dy := y* − y 

 

using the symbol “:=” to mean “is defined as”, we can write: 

 

 dy = 2x.dx 

 

so the equation in differentials approximates the change in the values of the original 

variables very accurately for a small change. 

In the early years of the calculus, this infinitesimal property was seen as the cardinal defining 

attribute of the calculus, and the subject actually came to be called the infinitesimal calculus. 

I simply do not see it this way. I have to admit that I am suspicious about any beliefs in 

infinities or infinitesimals in maths, and have a lot of sympathy with Bishop Berkeley who 

lambasted the calculus in the early eighteenth century on the basis that its practitioners took 

differentials to be significant or negligible simply as the whim suited them! It seems to me 

that the cardinal property is the linearity of the derivative forms, and this can be established 

purely algebraically without any recourse to infinities or infinitesimals with all their attendant 

philosophical difficulties. In brief, my thesis is this: don’t resort to infinities or infinitesimals 

if there is any other interpretation available. 

My picture is that the differential operator defines for any original equation a family of 

linear equations, which describe for two variables a family of lines through the origin, and 

for three variables a family of planes through the origin – equations in dx, dy and dz – with 

one unique member of the family for every point on the original line if there are two 

variables, or every point on the original surface if there are three variables. For more than 

three variables, the geometrical imagery gets difficult, as we have to think of hypersurfaces 

and hyperplanes, but the algebra carries on without a murmur. 

 

A major objection to the infinitesimal concept is that it led to the idea that differentials 

couldn’t stand on their own in an equation and needed to be “inflated back up” to “proper-

size” variables by always using them in a ratio form. This in turn led to the “pseudo-division” 

form for the coefficients of the differentials in any linear derivative, and indeed the normal 

presentation of the calculus uses this concept almost exclusively, so you have to know it. The 

idea is that we have a functional form like  

w = f(x, y, z)  

with a derivative – in my terminology: 

 dw = ∂x f.dx + ∂y f.dy + ∂z f.dz. 

Now set dy = 0 and dz = 0, and divide through by dx to give: 



 (dw/dx)y,z = ∂x f 

where the subscripts indicate that y and z are being “held constant” – i.e. treated as constants, 

so dy = 0 and dz = 0. This is commonly written using the ∂ symbol as: 

 (∂w/∂x)y,z 

and this is the standard notation for a partial derivative. The partial bit refers to the fact that 

in this case there are other variables which are “held constant”. If we have a relationship 

between only two variables like y = f(x), so that dy = ∂x f.dx unambiguously, we dispense with 

the subscripts and use just “d” instead of ∂ to give the ordinary derivative: 

 df (x)/dx. 

I think this pairwise approach gives quite a wrong picture of what is going on. There isn’t 

normally some paired connection between variables taken two by two, and an equation in 

differentials may often take the more general form: 

 ∂x f.dx + ∂y f.dy + ∂z f.dz = 0 

where no individual variable is singled out as having a coefficient of unity (1). We don’t treat 

variables in normal linear equations two by two in this pairwise fashion, and we shouldn’t do 

so with equations in differentials. 

The auxiliary concept of “holding the other variables constant” permeates the traditional 

presentation like a canker. It is not there in the actual algebra, and is a quite unnecessary 

notion.  

At this point I should stress again that in the literature the term derivative without a 

qualifying adjective is only used for the ordinary and partial derivatives defined above. 

Because this usage is so established, I will still use it, referring to forms like ∂x f as ordinary 

or partial derivatives as appropriate, but for brevity I will also use: 

OD for the ordinary derivative ∂f (x), and 

PD for the partial derivatives such as ∂y f (x, y, z). 

 

2.4 Inversion of the Differential Operator 

A central question in the calculus is whether we can obtain the original form from the 

derivative form. This procedure, the inverse of differentiating, is commonly called 

integrating or “indefinite integration”, but the term “integration” is also used for a more 

significant operation called “definite integration”. The two concepts are quite distinct and I 

am going to reserve the term integration for the concept introduced in Section 2.6. So I will 

call inverse differentiation simply that or else anti-differentiation. This suggests that the 

original form from which a derivative is obtained may be called the anti-derivative. All 

these terms are rather clumsy but as it happens, we will not need to use any of them very 

much. 



An obvious possibility is to try and find an inverse operator to the differential operator 

which we might label something like d
−1

. Unfortunately, there is no such inverse operator. 

The original form can only be divined by inspection, although there are some rules. This 

exercise is the huge field of “Methods of Integration”. 

It is very important to realize two things: there simply may not be an original form at all, and 

even when there is it will not be unique. These two points need some explanation. 

First, let’s consider some differential forms. A differential form is a quite specific thing, a 

linear expression or linear combination
4
 in differentials. Examples are: 

 14yz.dx + x
3
y.dy – 22.3x.dz 

 ∂x f.dx + ∂y f.dy + ∂z f.dz 

 2xy.dx + x
2
.dy 

 

 (x
4
 + 2xy – 3pq).ds + (12p – u

3
).dp – (3p – xu).dq 

 

where in the last I’ve tried to move away from just x and y. 

 

Only the middle two of these are the (exterior) derivatives of an original expression. The 

other two are simply differential forms that could not owe their origin to the application of 

the differential operator to a single original expression. The reason is simply that they do 

not fit the format of the second one. For example, in the first, the coefficient of dx (14yz) 

would have to be ∂xg and that of dy (x
3
y) would have to be ∂yg for some function g(x, y, z), 

and they just don’t match that prescription. We can tell that they don’t because we can test for 

this prescription using a reault known as Young’s theorem, which is: 

 

 ∂y∂xg(x, y) = ∂x∂yg(x, y) always. 

 

Applying Young’s theorem to the expressions 14yz  =? ∂xg(x, y, z) and x
3
y =? ∂yg(x, y, z) we 

should have: 

 

 ∂y(14yz) = 14z = ∂x(x
3
y) = 3x

2
y  

 

and clearly we don’t. (To see these are the ∂y and ∂x partial derivatives of 14yz and 3x
2
y 

respectively, imagine applying d to the form 14yz to give 14z.dy + 14y.dz for example. In this 

expression 14z is the ∂y part of the (exterior) derivative of an original expression ∂xg(x, y, z) 

= 14yz). 

 

2xy.dx + x
2
.dy, however, does obey this rule, with ∂y(2xy) = 2x, which does equal ∂x(x

2
) = 2x, 

and so this one is the derivative of an original form x
2
y: 

 

 d(x
2
y) = 2xy.dx + x

2
.dy. 

 

A differential form that is the (exterior) derivative of an original expression is called 

exact. 

                                                           
4
 See the Glossary for a brief definition. 



 

 

The same derivative can also come from more than one original, because “constant” terms 

drop out. So both x
2
 + 3x + 2 and x

2
 + 3x – 220 give rise to the same (exterior) derivative (2x 

+ 3).dx. This “unknown constant” or “lost constant” is called the constant of integration.
5
 

Inversion of differentiation is in general nasty, but one result we can get straight away, and 

this will always be useful. From d(x
n
) = nx

n−1
dx, putting m = n − 1, and so n = m + 1, we 

obtain: 

 (1/(m+1)).d(x
m+1

) = x
m
.dx 

or x
m
.dx = d(x

m+1/(m+1)) 

which enables us to invert the terms of any polynomial in one variable. So, for example: 

 (ax
2 

+ bx + c).dx = ⅓a.d(x
3
) + ½b.d(x

2
) + c.dx + k 

 = d(⅓a.x
3
 + ½b.x

2
 + c.x + k) 

where k is the constant of integration. So this is the general form that any original 

expression must take to have the (exterior) derivative (ax
2 

+ bx + c).dx. 

You may ask whether there is a more general way in which the axiom II of the d operator 

can be used, and indeed there is. Putting it as: 

 d(u(x).v(x)) = u(x).dv(x) + du(x).v(x) = u(x).∂xv(x).dx + ∂xu(x).v(x).dx 

we have the result: 

 u(x).∂xv(x).dx = d(u(x).v(x)) − ∂xu(x).v(x).dx 

which seems to have got us no further, as we’ve merely swapped the roles of u and v. But by 

adroit choice of u and v, this can be surprisingly useful, and we will use it in Section 2.7 to 

derive Taylor’s expansion. This use of the u−v swap using axiom II is called integration by 

parts.
6
 

 

                                                           
5
 From the “indefinite integration” terminology mentioned at the start of this Section, which I would prefer to 

avoid. 
6
 Again using the “indefinite integration” terminology.  



 
 

7.2 Elements of Complex Analysis 

 
Complex analysis is the theory of the calculus applied to functions that map from the plane 

into (or onto) the plane. We have already encountered several ways of treating points in the 

plane. Examples are: 

 

Defining a point p in the plane by its Cartesian coordinates x and y, usually expressed 

as an ordered pair (x, y). 

Expressing (x, y) as a 2-vector xe1 + ye2. 

Pre-multiplying the 2-vector by e1 to give xe1e1 + ye1e2 = x + jy, where we define j to 

be the 2-pseudoscalar: j := e1e2, so that j
2
 = −1. 

Expressing x + jy as a magnitude r and an angle θ, which can itself be written either 

as θx + jθy, or as e
jθ

 ≡ e↑jθ, which gives x + jy as re
jθ

. 

 

Both the x + jy and re
jθ

 forms are called complex numbers, and because of its built-in ability 

to handle rotations in the plane simply by multiplying by θx + jθy to rotate a point by an 

anticlockwise angle θ, or by the complex conjugate of θ, which is θx − jθy, to turn a point 

through a clockwise angle −θ, and for its general power and elegance, the complex number 

formulation is the preferred way to handle points in the plane. 

 

Since x and y are commonly used for the coordinates of a point in the plane, the letter z is 

preferred for the points (or complex numbers) themselves, and it is used in various guises, as 

plain z, as z1, z2, and so on, and as Greek ζ. So we will often write z = x + jy, and therefore 

functions defined with a point in the plane as argument appear as, for example, φ(z) or φ(x + 

jy) rather than φ(x, y). Because I cannot enter overscores − the usual notation for complex 

conjugates − on this word processor, I will use the alternative, and slightly more rare, 

asterisk notation, so: 

 

 z = x + jy → z* := x − jy. 

 

For functions that map from the plane into (or onto) the plane, the resulting value of φ is 

also a complex number, so that φ takes the form: 

  

φ(x, y) = φ(x + jy) = u(x + jy) + jv(x + jy) 

 

so that φ itself  has both an x and a y component, with 

 

 φx(x, y) = u(x + jy) 

 φy(x, y) = v(x + jy). 

 

The u and v here are simply the parts of the double function φ, which takes a point in the 

plane (x, y) and maps it into another point in the plane (u(x, y), v(x, y)). Put another way, now 

treating the plane as the space of 2-vectors, this is: 

 

 φ(xex + yey) = u(x, y)ex + v(x, y)ey. 

 

Bringing in the z notation, the function φ might be written as: 



  

 ζ = φ(z) = u(z) + jv(z) ≡ u(z)ex + v(z)ey = u(x, y)ex + v(x, y)ey. 

 

I may refer to these as complex-to-complex functions, or to emphasize that the complex 

number aspect is simply an interpretation, as plane-to-plane functions.  

 

The key theorem that gives the foundation of complex analysis is Green’s theorem from 

Section 6.8, which I will repeat here: 

 (∂xg(x, y) − ∂yf (x, y)).dxdy | Σ = (f (x, y).dx + g(x, y).dy) | bΣ 

where Σ is a bounded area in the plane, with boundary bΣ. In the complex formulation, the 

theorem is given a rather elegant form by the introduction of two derivative operators rather 

than using the differential operator directly. These two operators are defined as: 

 ∂z := ½(∂x − j∂y)  and ∂z* := ½(∂x + j∂y). 

These operators are not actually numbers, but are treated as obeying the regular algebra of 

complex numbers and distributing across their arguments accordingly. They have a pseudo-

complex conjugate form, and note which way round they are: the one with the complex 

conjugate symbol “*” is now the one with the plus sign. Their constituent derivatives ∂x and 

∂y just mean what they always mean − they define the partial derivatives or PD’s with 

respect to x and y. These operators really only affect ∂zz, ∂zz*, ∂z*z, and ∂z*z* because, like 

all derivatives, they simply cascade down through functions of z and z* by the chain rule of 

Section 2.2, remembering that z = z(x, y) = x + jy, and z* = z*(x, y) = x − jy. So, for example: 

 ∂z(z
3
) = 3z

2
.∂zz. 

They are written the “wrong” way round with good reason, as we see if we expand the four 

basic forms: 

         ∂zz = ½(∂x − j∂y)(x + jy) = ½(∂xx + j∂xy − j∂yx − j
2
∂yy) = ½(∂xx + ∂yy) = ½(1 + 1) = 1 

         ∂zz* = ½(∂x − j∂y)(x − jy) = ½(∂xx − j∂xy − j∂yx + j
2
∂yy) = ½(∂xx − ∂yy) = ½(1 − 1) = 0 

         ∂z*z = ½(∂x + j∂y)(x + jy) = ½(∂xx + j∂xy + j∂yx + j
2
∂yy) = ½(∂xx − ∂yy) = ½(1 − 1) = 0 

         ∂z*z* = ½(∂x + j∂y)(x − jy) = ½(∂xx − j∂xy + j∂yx − j
2
∂yy) = ½(∂xx + ∂yy) = ½(1 + 1) = 1 

where we remember that ∂xy = ∂yx = 0, and ∂xx = ∂yy = 1. So likewise, these complex 

derivative operators give ∂zz* = ∂z*z = 0 and ∂zz = ∂z*z* = 1. 

Just to show that these operators are consistent, I’ll give another example: 

 ∂z(z
2
) = ½(∂x − j∂y)(x + jy)

2 
= ½(∂x − j∂y)(x

2
 + 2jxy + j

2
y

2
) 

  = ½(2x + 2jy − 2j
2
x − 2j

3
y) = x + jy + x + jy 

  = 2(x + jy) = 2z. 

Applying ∂z* to a complex-to-complex function φ(z) = u(z) + jv(z), we find: 



 ∂z*φ(z) = ½(∂x + j∂y)(u(z) + jv(z)) = ½[∂xu(z) + j
2
.∂yv(z) + j∂yu(z) + j∂xv(z)] 

  = ½[∂xu(z) − ∂yv(z) + j.[∂yu(z) + ∂xv(z)]]. 

So ∂z*φ(z) = 0  if and only if ∂xu(z) = ∂yv(z) and ∂yu(z) = −∂xv(z). 

These subsidiary equations in terms of ∂x and ∂y on u(z) and v(z) are called the Cauchy-

Riemann equations. What makes them important is that they give a critical condition for the 

application of Green’s theorem. For if we take a 1-form in the plane of the form: 

 φ(z).dz = (u(z) + jv(z))(dx + jdy) 

where we have simply applied the differential operator in the usual way to z = x + jy to get: 

dz = dx + jdy, 

the expression for φ(z).dz expands to give: 

 φ(z).dz = (u(z)dx + j
2
v(z)dy) + j(u(z)dy + v(z)dx)  

= (u(z)dx − v(z)dy) + j.[u(z)dy + v(z)dx]. 

Now, replacing z with x, y, and applying the 1-form to a boundary of a closed region Σ, the 

second term becomes: 

 j.(v(x, y).dx + u(x, y).dy) | bΣ = j.(∂xu(x, y) − ∂yv(x, y)).dxdy | Σ.  

Applying Green’s theorem, if ∂z*φ(z) = 0, then ∂xu(z) = ∂yv(z) by the first Cauchy-Riemann 

equation, and so the integral is zero. 

Likewise for the first term, we obtain: 

 (u(x, y).dx − v(x, y).dy) | bΣ = (−∂xv(x, y) − ∂yu(x, y)).dxdy | Σ, 

and again, if ∂z*φ(z) = 0, then ∂yu(z) = −∂xv(z) by the second Cauchy-Riemann equation, 

and so the integral is zero. 

 

This proves Cauchy’s integral theorem: that if ∂z*φ(z) = 0, then φ(z).dz | bΣ = 0. 

 

Complex-to-complex functions which obey ½(∂x + j∂y)φ(z) = ∂z*φ(z) = 0 or the Cauchy-

Riemann equations, are said to be analytic or holomorphic
7
 because they do have a valid 

∂zφ(z) derivative. These terms are very important. 

We will also need a second result, known as Cauchy’s integral formula. For this, we need 

first to evaluate the line integral: 

 φ(z).dz | C = (z − z0)
m
dz | C 

                                                           
7
 As e.g. Nickerson, Spencer and Steenrod p.510. 



where C is a small circle of radius ρ about the point z0. To evaluate this, we parametrise C 

by t on the interval [0, 2π], giving: 

 z(t) = z0 + ρe
jt
. 

This is of course using the convenient parametrisation of a circle introduced in Sections 4.4 

and 4.6, this time around a point z0 away from the origin. Now: 

 (z − z0)
m
 = ρ

m
e

jmt
   and dz = jρe

jt
.dt, 

so the line integral around the circle, [0, 2π] being the pullback of C, becomes: 

 (z(t) − z0)
m
.dz | C = (ρ

m
e 

jmt 
× jρe 

jt
).dt | [0, 2π] = jρ

(m + 1)
 × e 

j (m + 1)t
dt | [0, 2π] . 

When m = −1, this gives: 

 jρ
0
 × e

0
dt | [0, 2π] = j.dt | [0, 2π] = j.[2π − 0] = 2πj 

because x
0

 = 1 always, and for m ≠ −1, 

 e 
j (m + 1)t

dt | [0, 2π] = e 
j (m + 1)t/(j(m+1)) | b[0, 2π] = 0, 

because e
0 

= e
n2π

 = 0. 

Now we can proceed straight to Cauchy’s integral formula, which states that  

 

Cauchy’s integral formula: if φ(z) is analytic in a region including a closed path C,     

(i.e. ∂z*φ(z) = 0 in this region), then for any point z0 enclosed by the path C: 

 [φ(z)/(z − z0)].dz | C  = 2πj.φ(z0). 

 

First we evaluate: 

∂z*[φ(z)/(z − z0)] = ∂z*[φ(z)(z − z0)
−1

] = (∂z*φ(z))(z − z0)
−1

 − φ(z)(z − z0)
−2

∂z*(z − z0) 

 

      = 0.(z − z0)
−1

 − φ(z)(z − z0)
−2

∂z*z = 0 − φ(z)(z − z0)
−2

.0 = 0 

 

so, defining ψ(z) := φ(z)/(z − z0), we can say that ψ(z) is also analytic wherever z ≠ z0, so 

Cauchy’s integral theorem holds for it. 

 



 

Figure 7.2.1 

 

Now we use the device indicated in Figure 7.2.1, putting an arbitrarily small ring C0 around 

z0 and in the annular space − shown shaded in the Figure − between C and C0,  

ψ(z) = φ(z0)/(z − z0) is analytic there and so, by Cauchy’s integral theorem, the combined 

integral: 

 

 [φ(z)/(z − z0)].dz | (C + C0) 

 

over the two curves is zero. Note that here we go round C anticlockwise and C0 clockwise to 

give a consistently orientated boundary to the annulus. So it must be that: 

 

 [φ(z)/(z − z0)].dz | C = −[φ(z)/(z − z0)].dz | C0. 

 

If C0 is small enough − and we can make it as small as we choose − then φ(z) ≈ φ(z0) 

throughout the area of C0, and so: 

 

  −[φ(z)/(z − z0)].dz | C0(clockwise) =  [φ(z)/(z − z0)].dz | C0(anticlockwise)  

 

≈ [φ(z0)/(z − z0)].dz | C0(anticlockwise) = φ(z0).[(z − z0)
−1

.dz | C0] = 2πj.φ(z0). 

 

 

C

z0

C0

y Axis

x  Axis



This Cauchy integral formula opens up tremendous possibilities, because these line 

integrals in the plane come up again and again, and they usually involve functions that are 

analytic everywhere except at a few singular points. If such is the case, we can “hive off” the 

singularities as shown in Figure 7.2.2 and evaluate the line integrals around them by 

Cauchy’s integral formula. Because the function is analytic, the line integral overall must 

be zero, so that over the enveloping curve − C in the Figure − it must be equal and opposite 

to the sum of the line integrals around the singularities. This trick is called integration by 

the method of residues. 

 

 

Figure 7.2.2 

 

As an example, suppose we have φ(z) = (4 − 3z)/(z
2
 − z). This can be expanded by partial 

fractions as introduced in Section 1.9: 

 

(4 − 3z)/z(z − 1) = A/z + B/(z − 1) = (A(z − 1) + Bz)/z(z − 1). 

 

Equating like powers of z, A + B = −3, −A = 4, so A = −4, B = 1, and 

 

 (4 − 3z)/(z
2
 − z) = −4/z + 1/(z − 1). 

 

Partial fractions, by the way, are much used in evaluating integrals (in the sense of finding 

antiderivatives).  

C

z0

C0

y Axis

x  Axis

z3

C3

z2

C2

z4

C4

z1

C1



 

Now φ(z) appears as the sum of two functions of the type in Cauchy’s integral formula 

with singularities − points where we get a division by zero − at z = 0 and at z = 1, and so a 

line integral in φ(z) can be expanded as: 

 

 φ(z)dz | C = [−4/(z − 0)]dz | C + [1/(z − 1)]dz | C  

      

     = [ν0(z0)/(z − 0)]dz | C + [ν1(z1)/(z − 1)]dz | C. 

 

Here I write 4 as ν0(z0) with z0 = 0, and similarly 1 as ν1(z1) with z1 = 1 to emphasize the 

analogy with the Cauchy formula.  So if C encloses only the origin (z = 0), the integral will 

be 2πj.ν0(z0) = 2πj.(−4) = −8πj; if it encloses only the point z = 1, the integral will be 

2πj.ν1(z1) = 2πj.(1) = 2πj; if it encloses both it will be πj(2 − 8) = −6πj. 

 

In practice, integration by residues is a bit more subtle than this, but this gives the general 

idea. 

 

Before leaving this Section, I’ll mention an interesting historical note, which highlights the 

influence of fashion even in advanced mathematical work. 

 

Because complex numbers are numbers and constitute an extension of the normal number 

system of real numbers, it occurred to the hugely influential German mathematician David 

Hilbert that one could set up vector spaces with complex numbers acting as the scalars of 

the space. So, in a way, we’d have n-vector spaces with 2-vector scalars! Such spaces are 

called Hilbert spaces, and they are widely used. In particular, because Hilbert made this 

suggestion at just about the time that quantum mechanics was starting to be developed, they 

came to be used as a foundation for the mathematics of quantum physics. This led to the 

notion that there was something unavoidably “complex numberish” about quantum theory. It 

could be argued that this notion has recently been challenged by the Geometric Algebra 

school, as GA shows that one of the central quantum algebras, the Pauli algebra, described in 

Section 5.9, appears naturally in 3-space when the geometric product is used. As it happens, 

this was apparently known to Pauli himself, who knew of Clifford’s work.  

 

 



 

 

 

 

 

 

Chapter 9 

 

Projective Geometry 

 
 

 

9.1 Introduction 
 

 

Projective Geometry has its origins in the theory of perspective. To put this into context, 

I’ll give a brief résumé of general ideas involved in the projection of a three-dimensional 

scene or object onto a two-dimensional surface.  

 

In architecture and engineering, a rather limited set of geometrical projections are used, 

which fall into two main classes: parallel and perspective. This may seem to be in marked 

contrast to geographers, who select from a very large range of projections to accommodate 

the problem of mapping a spherical earth onto plane paper. But there’s a big difference: 

projections in engineering are mapping a three-dimensional object onto a plane two-

dimensional surface; the projections used in cartography are mapping a curved two-

dimensional surface onto a plane two-dimensional surface.  

 

As there’s a certain amount of confusion about terminology here, I will follow the 

terminology used in F. D. K. Ching’s Architectural Graphics, a standard U.S. textbook, 

which gives the terms familiar to most American architects and which are those used in the 

almost universally American software employed in CAD work.  

 

 

The projections are most easily distinguished by the use of two auxiliary concepts. The first 

is that of projector lines or projectors, which are simply straight lines so defined that 

precisely one alone passes through each point of the three-dimensional object being depicted. 

The second is that of the plane on which the two-dimensional image will appear, which is 

called the picture plane. Exactly how the projectors are defined defines the projection: for 

where the unique projector through any point in space P with coordinates  (x, y, z) passes 

through the picture plane defines the image of P. Prof. Ching distinguishes three main 

classes: 

 



 Orthographic Projection 
 

 The projectors are parallel to each other and perpendicular to the picture plane. 
 

 Oblique Projection 
  
 The projectors are parallel to each other and at an oblique angle (i.e. an angle other 

than a right angle) to the picture plane. 
 

 Perspective Projection 
  
 The projectors all pass through a single point in space SP unique to the projection 

that represents a single eye of the observer. This unique point is called the eye point 

or station point. I will use both terms interchangeably. 
 

The first two are both parallel projections, which is why I refer to only two main classes, 

parallel and perspective. Of these projections, perspective is much the most interesting, 

both mathematically and artistically, and its understanding by Brunelleschi in 1425 was one 

of the turning points of the modern era. There’s a widespread belief today that perspective is 

some sort of Western convention, but it isn’t: it’s a true scientific discovery, because in 

perspective the image in the picture plane of any point in space lies in exactly the direction, 

as seen by the observer’s eye, in which the point itself does. So a perspective image is a true 

realization of what the observer sees. 

 

Parallel projections are sometimes referred to simply as “paraline” projections in the USA, 

but this is an informal term. Orthographic projections are sometimes mistakenly called 

orthogonal, but because this term has established usage in mathematics it should be avoided. 

 

 

 

The three projections can be defined very easily algebraically. To do this, we need to choose 

coordinates specific to each of the three projections, and if we also define picture plane 

coordinates ξ and ψ measuring distances in the x and y directions within the picture plane, 

we can look at the three main projection types in detail, using diagrams showing just the xz-

plane. The logic for the yz-plane is similar in each case.  

 

The picture plane, which we assume lies at right angles to the xz-plane, and indeed, except 

for the oblique case, actually is parallel to the xy-plane, now appears as a line, since it’s seen 

edge on. That line is marked PP in the three diagrams which follow, and for clarity, I’ve 

chosen to put each on a separate page. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 For Orthographic Projection 
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Figure 9.1.1 

 

 Choose coordinates such that the projectors are parallel to the z axis and the x and y 

axes are parallel to the picture plane. Then the image of (x, y, z) in the picture 

plane is at the point (ξ, ψ) = (x, y), independent of the value of z. In other words, all 

points with the same value of z map into the same image point. 



 For Oblique Projection 
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Figure 9.1.2 

 

  Choose coordinates such that the projectors are parallel to the z axis and at an angle 

θ = (θx, θz) to the picture plane in the xz-plane, but at right angles to the picture 

plane in the yz-plane. In other words, rotate the x and y axes about the z until the 

obliquity falls in the xz-plane. Then the image of (x, y, z) in the picture plane will 

fall at the point (ξ, ψ) = (x/θy, y) as can be seen in Figure 9.1.2. In this diagram, θx, 

the cosine part of θ, runs along the z axis, and θy, the sine part, runs parallel to the x 

axis. This is because the angle here is being measured anticlockwise from the z axis 

in this diagram. Note that if θ = j ≡ 0 + j.1, so the angle between the picture plane 

PP and the z axis is 90°, then (ξ, ψ) = (x/1, y) = (x, y) and the projection reduces to 

the ordinary orthographic projection. 



 For Perspective Projection 
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Figure 9.1.3 

 

 Choose coordinates so that the z axis is at right angles to the picture plane, and so 

the x and y axes are parallel to the picture plane. Let the unique eye point or station 

point be at the origin (0, 0, 0). Now scale the coordinates so that the picture plane 

coincides with the plane z = 1. Then, by similar triangles, as in Figure 9.1.3, we can 

see that the image of (x, y, z) in the picture plane will be at the point (ξ, ψ) = (x/z, 

y/z).  This division by the third coordinate will be hugely important in what follows. 

 

Perspective is unique in that all points in a given direction have images closer and closer to a 

specific limiting point in the picture plane as the points are selected further and further from 

the eye point. This limiting point is unique to that direction. We can see this easily enough. 

 

Take any point in the z = 0 plane (x0, y0, 0), and take any direction defined as (θx, θy, 1). Then 

all points along the line through (x0, y0, 0) running in the direction (θx, θy, 1) will obey the 

equation: 

 

 P = (x, y, z) = (x0, y0, 0) + t.(θx, θy, 1), 

 



where we’re assuming ordinary vector algebra. Then as t → ∞, the image of P is: 

 

 p = (x/z, y/z) = ((x0 + tθx)/t, (y0 + tθy)/t) = (x0/t + θx, y0/t + θy) → (θx, θy). 

 

So the limiting point of the images is independent of (x0, y0). All points lying far enough 

away in the direction defined by (θx, θy) have their images in the neighbourhood of the same 

image point given by precisely that direction itself (θx, θy). 

 

This unique image point for any given direction from the eye point is called the vanishing 

point for that direction. By taking (x0, y0) = (0, 0), or the eye point itself (we had assumed z = 

0 here) we can see that this image point is precisely the point where the unique line through 

the eye point in the direction (θx, θy, 1) intersects the picture plane.  

 

In this I’ve assumed that “θz” = 1 always to avoid a notorious case. If we take “θz” = 0, so we 

run in a direction (θx, θy, 0) from the eye point, our line never intersects the picture plane but 

simply runs off to infinity parallel to the picture plane. So directions parallel to the picture 

plane do not have vanishing points lying in the picture plane. This anomaly was the entire 

reason for the introduction of projective geometry. 

 

Algebraically we now have: 

 

 P = (x, y, z) = (x0, y0, 0) + t.(θx, θy, 0), 

 

so as t→ ∞, the image point would be undefined as the z coordinate of P is consistently 

zero: 

 p = (x/z, y/z) = ((x0 + tθx)/0, (y0 + tθy)/0) → (∞, ∞). 

 

So, in the sense that x/0 = ∞, any point in a direction parallel to the picture plane, however 

near to the eye point, has its image at infinity.  

 

This issue is so important that I will devote the next Section to the consideration of vanishing 

points. 

 

 

 
 


